• Title/Summary/Keyword: Protein Turnover

Search Result 103, Processing Time 0.031 seconds

The Litter Accumulation, Decay and Turnover Models and their Validation (낙엽의 축적, 분해 및 무기화에 관한 모델정립과 그 적용)

  • Chang, Nam-Kee;Sung-Kyu Lee;Bok-Seon Lee;Heu Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.139-149
    • /
    • 1987
  • Mathematical models of the litter accumulation, decay and turnover in the grassland and forest ecosystems of equilibrium state of the annual litter production were established to analyse the decay rates of organic and inorganic constituents of the litter. Those models were validated by an application to a Phragmites longivalvis grassland in a delta of the River Nakdong. The decay constants of cold-water-soluble fractions, other carbohydrates, hot-water-soluble fractions, cellulose, crude fat, lignin and crude protein in the litter were 0.730, 0.583, 0.555, 0.505, 0.479, 0.331 and 0.310 respectively. The amount of mineral nutrients such as N. P. K. Ca and Mg returned annually to the soil were estimated to 7.09, 1.34, 2.36, 4.37 and 0.79g/m2 respectively.

  • PDF

Sirt1 and the Mitochondria

  • Tang, Bor Luen
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1's deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1's role in caloric restriction and impacts on longevity. The notion of Sirt1's regulation of PGC-$1{\alpha}$ activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1's regulation of mitochondrial biogenesis and turnover, in relation to PGC-$1{\alpha}$ deacetylation and various aspects of cellular physiology and disease.

Quality Control of Photosystem II during Photoinhibition

  • Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.55-58
    • /
    • 2002
  • The reaction center Dl protein of photosystem II is the target of photodamage by excess illumination. The Dl protein is damaged by reactive oxygen species generated by photochemical reactions and then degraded by specific proteolytic enzymes. We found that the Dl protein also cross-links with the surrounding polypeptides, such as D2 and CP43 in isolated thylakoids or photosystem II-enriched membranes from spinach under the illumination with strong visible light. The cross-linking was observed in spinach leaf discs as well when they were illuminated at higher temperature (40°C). It was also shown that the cross-linked products are digested efficiently by a protease(s) in the stroma. Thus the cross-linking/digestion processes of the Dl protein seem to comprise a new pathway in the turnover of the photodamaged Dl protein. It should be noted, however, that the cross-linked products of the Dl protein and CP43 induced by endogenous cationic radicals in the donor-side photoinhibition are resistant to proteolytic digestion. Accumulation of these cross-linked products in the thylakoids may lead to the decay of the function of chloroplasts and finally to the death of plant cells. Thus, we suggest that the quality control of photosystem II, especially removal of the cross-linked products of the Dl protein, is crucial for the survival of chloroplasts under the light stress.

  • PDF

Increasing the Flow of Protein from Ruminal Fermentation - Review -

  • Wallace, R.J.;Newbold, C.J.;Bequette, B.J.;MacRae, J.C.;Lobley, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.885-893
    • /
    • 2001
  • This review summarizes some recent research into ways of improving the productivity of ruminal fermentation by increasing protein flow from the rumen and decreasing the breakdown of protein that results from the action of ruminal microorganisms. Proteinases derived from the plant seem to be of importance to the overall process of proteolysis in grazing animals. Thus, altering the expression of proteinases in grasses may be a way of improving their nutritive value for ruminants. Inhibiting rumen microbial activity in ammonia formation remains an important objective: new ways of inhibiting peptide and amino acid breakdown are described. Rumen protozoa cause much of the bacterial protein turnover which occurs in the rumen. The major impact of defaunation on N recycling in the sheep rumen is described. Alternatively, if the efficiency of microbial protein synthesis can be increased by judicious addition of certain individual amino acids, protein flow from ruminal fermentation may be increased. Proline may be a key amino acid for non-cellulolytic bacteria, while phenylalanine is important for cellulolytic species. Inhibiting rumen wall tissue breakdown appears to be an important mechanism by which the antibiotic, flavomycin, improves N retention in ruminants. A role for Fusobacterium necrophorum seems likely, and alternative methods for its regulation are required, since growth-promoting antibiotics will soon be banned in many countries.

Effects of gamma irradiation on the functional and structural characteristics of soy protein isolates (방사선 조사가 분리대두단백의 기능적, 구조적 특성에 미치는 영향)

  • 오경남;이숙영
    • Korean journal of food and cookery science
    • /
    • v.20 no.3
    • /
    • pp.256-264
    • /
    • 2004
  • The effects of irradiation on the functional and structural characteristics of soy protein isolates were studied. Soymilk was irradiated at 1, 5, and l0kGy, after which soy protein isolates were prepared. The functional properties of soy protein isolates were examined including solubility, emulsion capacity and stability, foam capacity and stability, structural properties as represented by SDS-PAGE pattern, and secondary and tertiary structures. The solubility and emulsion capacity were increased by radiation treatment at 1kGy however the values were adversely affected again as dosage was increased above 5kGy. As irradiation dosage increased, an increase of foaming capacity at 1kGy and a decreasing turnover afterwards were also noted in foaming capacity, although the differences were not statistically significant. The SDS-PAGE pattern showed fragmentation and aggregation of protein molecules as affected by irradiation in proportion to the dosage increase. The results of CD and fluorescence spectroscopy revealed increased aperiodic structure contents with the dosage increase. It was assumed that irradiation dosagefrom 5 to l0kGy could initiate minimal denaturation of protein in various foods compared to general heat treatment.

Effects of Non-protein Energy Intake on Whole Body Protein Synthesis, Nitrogen Retention and Glucose Turnover in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.536-542
    • /
    • 2007
  • The responses of whole body protein and glucose kinetics and of nitrogen (N) metabolism to non-protein energy intake (NPEI) were determined using an isotope dilution approach and measurement of N balance in three adult male goats. The diets containing 1.0, 1.5 and 2.0 times ME maintenance requirement, with fixed intake of CP (1.5 times maintenance) and percentage of hay (33%), were fed twice daily for each 21 d experimental period. After an adaptation period of 11 d, N balance was determined over 3 d. On day 17, whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were determined during the absorptive state by a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine, [$^2H_4$]tyrosine and [$^{13}C_6$]glucose, with simultaneous measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also measured at 6 h after feeding over 3 d. Nitrogen retention tended to increase (p<0.10) with increasing NPEI, although digestible N decreased linearly (p<0.05). Increasing NPEI decreased (p<0.01) ammonia N concentration, but increased acetate (p<0.05) and propionate (p<0.05) concentrations in the rumen. Despite decreased plasma urea N concentration (p<0.01), increased plasma tyrosine concentration (p<0.05), and trends toward increased plasma total amino N (p<0.10) and phenylalanine concentrations (p<0.10) were found in response to increasing NPEI. Increasing NPEI increased ILR of both glucose (p<0.01) and phenylalanine (p<0.05), but did not affect ($p{\geq}0.10$) that of tyrosine. Whole body protein synthesis increased (p<0.05) in response to increasing NPEI, resulting from increased utilization rate for protein synthesis (p<0.05) and unchanged hydroxylation rate of phenylalanine ($p{\geq}0.10$). These results suggest that increasing NPEI may enhance WBPS and glucose turnover at the absorptive state and improve the efficiency of digestible N retention in goats, with possibly decreased ammonia and increased amino acid absorption. In addition, simultaneous increases in WBPS and glucose ILR suggest stimulatory effect of glucose availability on WBPS, especially when sufficient amino acid is supplied.

Recent Advances in Biotechnology of Rumen Bacteria - Review -

  • Forsberg, C.W.;Egbosimba, E.E.;MacLellan, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.93-103
    • /
    • 1999
  • Recent advances in the biotechnology of ruminal bacteria have been made in the characterization of enzymes involved in plant cell wall digestion, the exploration of mechanisms of gene transfer in ruminal bacteria, and the development of vectors. These studies have culminated in the introduction and expression of heterologous glucanase and xylanase genes and a fluoroacetate dehalogenase gene in ruminal bacteria. These recent studies show the strategy of gene and vector construction necessary for the production of genetically engineered bacteria for introduction into ruminants. Molecular research on proteolytic turnover of protein in the rumen is in its infancy, but a novel protein high in essential amino acids designed for intracellular expression in ruminal organisms provides an interesting approach for improving the amino acid profile of ruminal organisms.

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

Turnover of Phosphate Compounds in Chlorella cells in a P-free medium (인산결핍배지에 있어서의 Chlorella 세포내의 인산화합물의 전환)

  • 이영녹
    • Journal of Plant Biology
    • /
    • v.9 no.1_2
    • /
    • pp.1-6
    • /
    • 1966
  • Using the Chlorella cells which had been uniformly labeled with $^{32}P$, the distribution of phosphorus in various fractions of cell material was investigated. Uniformly $^{32}P$-labeled Chlorella cells were further grown in a P-free medium, and some protions of the cells were taken out at intervals during the culture, and subjected to analyze the contents of $^{32}P$ in various fractins of the cell constituents. 2. Analysis of the $^{32}P$-labeled Chlorella cells showed that the highest in P-content was the fraction of RNA followed by those of lipid, RNA-polyphosphate complex, acid-insoluble polyphosphate, acid-soluble polyphosphate, DNA and protein. 3. During the culture of $^{32}P$-labeled Chlorella cells in a P-free medium, amounts of phosphate in DNA, protein and lipid fractions increased, while the P-contents in the fraction of RNA-polyphosphate complex decreased as well as those of acid-insoluble polyphosphate and acid-soluble polyphosphate fractions. 4. It was inferred that phosphorus used in the syntheses of DNA and protein was taken from polyphosphates of the cells, and RNA-polyphosphate complex would play an important role as a phosphate pool.

  • PDF

Effects of Formalin Treated Soy Bean as a Source of Rumen Undegradable Protein on Rumen Functions of Non-lactating Dairy Cows on Concentrate Based-diets

  • Kanjanapruthipong, J.;Vajrabukka, C.;Sindhuvanich, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1439-1444
    • /
    • 2002
  • An objective of this study was to determine the effects of increasing contents of rumen undegradable protein (RUP) from formalin treated soy bean (FSBM) on rumen functions. Four rumen canulated non-lactating cows were randomly allocated to total mixed rations (TMR) containing different proportions of soy bean meal (SBM) and FSBM. Of rumen fermentation characteristics, concentrations of ruminal fluid ammonia and molar proportions of isoacids decreased with increasing contents of RUP in diets (p<0.01). The animals on TMR containing only SBM gained less weight and had smaller rumen volume than those on TMR containing RUP from FSBM (p<0.05). Organic matter and neutral detergent fiber digestibility in sacco were not different (p>0.05). The density of protozoa particularly small Entodinium sp. in ruminal fluid was higher in animal fed TMR containing SBM:FSBM (34:66) and FSBM than those fed TMR containing SBM:FSBM (66:34) and SBM (p<0.01). Total viable count, and net microbial protein synthesis as indicated by purine derivatives in urine increased with increasing contents of RUP from FSBM (p<0.01). It can be concluded that a reduction in net microbial protein synthesis in the rumen with increasing contents of RUP in the diet can be due to the reduction of preformed protein available for microbial growth as well as an increased turnover rate of microbial cells by predatory activity of protozoa.