• Title/Summary/Keyword: Protein Transduction

Search Result 600, Processing Time 0.033 seconds

EFFECTS OF HYDROQUINONE ON NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE (Hydroquinone이 인체 상피세포의 발암화에 미치는 영향)

  • Sohn, Jung-Hee;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.218-228
    • /
    • 2010
  • Components of dental resin-based restorative materials are reported to leach from the filling materials even after polymerization. Hydroquinone (HQ) is one of the major monomers used in the dental resin and is known as a carcinogen. Thus, carcinogenic risk of HQ leaching from the dental resin becomes a public health concern. The present study attempted to examine the carcinogenic potentials of HQ on the human epithelial cell, which is the target cell origin of the most of oral cancers. Cytotoxicity of HQ was observed above 50${\mu}M$ as measured by LDH assay, indicating a relatively low toxicity of this substance in human epithelial cells. The parameters of neoplastic cellular transformation such as cell saturation density, soft agar colony formation and cell aggregation were analyzed to examine the carcinogenic potential of HQ. The study showed that 2-week exposure of HQ showed the tendency of increase in the saturation density and the significant enhancement of soft agar colony formation at the highest dose, 50 ${\mu}M$ only. It is suggested that HQ has a weak potential of carcinogenicity. When cells were treated with HQ and TPA, a well-known tumor promoter, the parameters of neoplastic cellular transformation was significantly increased. This result indicates that the potential risk of carcinogenicity from HQ is largely dependent upon the presence of promoter. Exposure of 50 ${\mu}M$ HQ increased the time-dependent apoptosis as measured by the ELISA kit. This concentration coincides with a dose of neoplastic transformation, indicating a possible link between apoptosis and HQ-induced cellular transformation. Hydroquinone generated Reactive Oxygen Species (ROS) which was evidenced by the treatment of antioxidants such as trolox and N-acetyl cysteine and the GSH depleting agent, BSO. Antioxidants blocked the generation of ROS and the GSH depleting agent, BSO dramatically increased the ROS production. Since HQ is known to increase ROS production thru activation of transcriptional factor such as c-Myb and Pim-1, it is speculated that ROS generation by HQ plays a role in the activation of oncogene, which may lead to neoplastic transformation. In addition, ROS is involved in the alteration of signal transduction, which regulates the apoptosis in many cellular systems. Thus, ROS-mediated apoptosis may be involved in the HQ-induced carcinogenic processes. Protein kinase C (PKC) is known to play pivotal roles in neoplastic transformation of cells and its high expression is often found in a variety of types of tumors including oral cancer. PKC translocation of PKC-${\alpha}$ was observed following HQ exposure. Altered signaling system may also play a role in the transformation process. Taken together, HQ leached from the dental resin does not pose a significant threat as a cancer causing agent, but its carcinogenic potential can be significantly elevated in the presence of promoter. The mechanism of HQ-induced carcinogenesis involved ROS generation, apoptosis and altered signaling pathway. The present study will provide a valuable data to estimate the potential risk of HQ as a carcinogen and understand mechanism of HQ-induced carcinogenesis in human epithelial cells.

A study on the regulatory effect of p-38 MAP kinase on nitric oxide and interleukin-6 in osteoblasts (조골세포에시 p-38 MAP kinase의 nitric oxide 및 interleukin-6 생성조절에 관한 연구)

  • Lee, Kyung-Won;Lee, Doe-Hoon;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.199-210
    • /
    • 2003
  • Tooth movement is the result of bone metabolism in the periodontium, where various cytokines take important roles. Interleukin-6(II-6) and nitrous oxide (NO) were reported to be secreted from osteoblasts in the process of bone resorption. The mechanism of the process has not been clearly understood, but the activation of mitogen-activated protein kinase (MAPK) was known to be an important process in the release of the inflammatory cytotines in macrophages. In this regard, to prove the role of MAPK in the release of IL-6 and NO in MC3T3E-1 osteoblasts, Northern blot analysis, Western blot analysis and immune complex kinase assay were used. As a result, the treatment of MC3T3E-1 osteoblast cultures with combined $interferon-\gamma(IFN-\gamma)$, lipopolysaccharide (LPS) and tumor necrosis $factor-\alpha(TNF-\alpha)$ induces expressions of inducible nitric oxide synthase (iNOS) and IL-6, resulting in sustained releases of large amounts of NO and IL-6. However, $IFN-\gamma,\;LPS,\;and\;TNF-\alpha$ individually induce a non-detectable or small amount of NO and IL-6 in MC3T3E-1 osteoblasts. The role of MAPK activation in the early intracellular signal transduction involved in iNOS and IL-6 transcription in the combined agents-stimulated osteoblasts has been investigated. The p38 MAPK pathway is specifically involved in the combined agents-induced NO and IL-6 release, since NO and IL-6 release in the presence of a specific inhibitor of p38 MAPK, 4-(4-fluorophenyl)-2-(4-metylsulfinylphenyl)-5-(4-metylsulfinylphenyl)-5-(4-pyridyl)imidazole) (SB203580), were significantly diminished. In contrast, PD98059, a specific inhibitor of MEK1, had no effect on NO and IL-6 release. Northern blot analysis showed that the p3a MAPK pathway controlled the iNOS and IL-6 transcription level. These data suggest that p38 MAPK play an important role in the secretion of NO and IL-6 in $LPS/IFN{\gamma}-or\;TNF-\gamma-treated\;MC3T3E-1$ osteoblasts.

Adhesion-induced generation of oxygen free radical from human alveolar macrophages and its mechanisms (폐포대식세포의 부착에 의한 산소유리기 분비능 활성화 및 그 기전)

  • Chung, Man-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.210-220
    • /
    • 1996
  • Background : Neutrophils or monocytes separated in vitro by the adherence to plastic surface are known to be activated by surface adherence itself and subsequent experimental data might be altered by surface adherence. In the process of surface adherence, adhesion molecules have a clear role in intracellular signal pathway of cellular activation. Human alveolar macrophages(HAM) are frequently purified by the adherence procedure after bronchoalveolar lavage. But the experimental data of many reports about alveolar macrophages have ignored the possibility of adhesion-induced cellular activation. Method : Bronchoalveolar lavage was performed in the person whose lung of either side was confirmed to be normal by chest CT. With the measurement of hydrogen peroxide release from adherent HAM to plastic surface and non-adherent HAM with or without additional stimulation of phorbol myristate acetate(PMA) or N-formyl-methionyl-leucyl-phenylalanine (fMLP), we observed the effect of the adherence to plastic surface. We also evaluated the effect of various biological surfaces on adhesion-induced activation of HAM. Then, to define the intracellular pathway of signal transduction, pretreatment with cycloheximide, pertussis toxin and anti-CD11/CD18 monoclonal antibody was done and we measured hydrogen peroxide in the culture supernatant of HAM. Results : 1) The adherence itself to plastic surface directly stimulated hydrogen peroxide release from human alveolar macrophages and chemical stimuli such as phorbol myristate acetate(PMA) or N-formyl-methionyl-leucyl-phenylalanine(fMLP) colud not increase hydrogen peroxide release in these adherent macrophages which is already activated. 2) PMA activated human alveolar macrophages irrespective of the state of adhesion. However, fMLP stimulated the release of hydrogen peroxide from the adherent macrophages, but not from the non-adherent macrophages. 3) HAM adherent to A549 cell(type II alveolar epithelium-like human cell line) monolayer released more hydrogen peroxide in response to both PMA and fMLP. This adherence-dependent effect of fMLP was blocked by pretreatment of macrophages with cycloheximide, pertussis toxin and anti-CD18 monoclonal antibody, Conclusion : These results suggest that the stimulatory effect of PMA and fMLP can not be found in adherent macrophage because of the activation of human alveolar macrophage by the adherence to plastic surface and the cells adhered to biologic surface such as alveolar epithelial cells are appropriately responsive to these stimuli. It is also likely that the effect of fMLP on the adherent macrophage requires new protein synthesis via G protein pathway and is dependent on the adhesion between alveolar macrophages and alveolar epithelial cells by virtue of CD11/CD18 adhesion molecules.

  • PDF

The Effect of Uteroglobin on cPLA2, COX-2 Expression and ERK Activation in NSCLC Cells (비소세포 폐암세포에서 Uteroglobin의 이입에 의한 cPLA2와 COX-2 발현 및 ERK 활성의 변화)

  • Kim, Woo Jin;Yoon, Jung Min;Lee, Kyoung Hee;Han, Seon Jin;Shin, Won Hyuk;Yim, Jae-Joon;Yoo, Chul-Gyu;Lee, Choon Taek;Han, Sung Koo;Shim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.6
    • /
    • pp.638-645
    • /
    • 2004
  • Background : Uteroglobin is a protein produced by the normal bronchial epithelium and its expression level is lower in non-small cell lung cancer tissues and cell lines. It mainly functions as an anti-inflammatory, and when it is overexpressed in cancer cells, the neoplastic phenotype is antagonized. cPLA2 and COX-2, which are also associated with inflammation, were reported to be related to cancer. The relationship between cPLA2, COX-2 and uteroglobin is unclear. The relationship between uteroglobin and ERK, which is related to cell growth, is also not unclear. This study investigated the changes in the cPLA2 and COX-2 expression levels and the ERK activities after the overexpression of uteroglobin in non-small cell lung cancer cell lines. Methods : The A549 and NCI-H460 cell lines were infected by adenovirus-null and adenovirusuteroglobin. The cChange in the cPLA2, COX-2 expression level and ERK activity after uteroglobin overexpression was measured by Western blot. The change in MMP activity was measured by zymography. Results : Western blot revealed decreased expression levels of cPLA2, and COX-2, and increased pERK levels in nonsmall cell lung cancer cells after uteroglobin overexpression. Zymography revealed no changes in the MMP-2 activity and lower MMP-9 activity. U0126, which is a specific inhibitor of ERK-activating kinase MEK-1/-2, prevented the decrease in the MMP-9 activity Conclusions : A decrease in cPLA2 expression, COX-2 expression, MMP-9 activity and a increase in ERK activity may be related to the anticancer effects of uteroglobin in nonsmall cell lung cancer cells.

Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation

  • Cao, Yin;Yang, Yingbo;Wu, Hui;Lu, Yi;Wu, Shuang;Liu, Lulu;Wang, Changhong;Huang, Fei;Shi, Hailian;Zhang, Beibei;Wu, Xiaojun;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.442-452
    • /
    • 2020
  • Backgroud: Sleep deprivation (SD) impairs learning and memory by inhibiting hippocampal functioning at molecular and cellular levels. Abnormal autophagy and apoptosis are closely associated with neurodegeneration in the central nervous system. This study is aimed to explore the alleviative effect and the underlying molecular mechanism of stem-leaf saponins of Panax notoginseng (SLSP) on the abnormal neuronal autophagy and apoptosis in hippocampus of mice with impaired learning and memory induced by SD. Methods: Mouse spatial learning and memory were assessed by Morris water maze test. Neuronal morphological changes were observed by Nissl staining. Autophagosome formation was examined by transmission electron microscopy, immunofluorescent staining, acridine orange staining, and transient transfection of the tf-LC3 plasmid. Apoptotic event was analyzed by flow cytometry after PI/annexin V staining. The expression or activation of autophagy and apoptosis-related proteins were detected by Western blotting assay. Results: SLSP was shown to improve the spatial learning and memory of mice after SD for 48 h, accomanied with restrained excessive autophage and apoptosis, whereas enhanced activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in hippocampal neurons. Meanwhile, it improved the aberrant autophagy and apoptosis induced by rapamycin and re-activated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling transduction in HT-22 cells, a hippocampal neuronal cell line. Conclusion: SLSP could alleviate cognitive impairment induced by SD, which was achieved probably through suppressing the abnormal autophagy and apoptosis of hippocampal neurons. The findings may contribute to the clinical application of SLSP in the prevention or therapy of neurological disorders associated with SD.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionicgonadotropin Receptor

  • Min, K. S.
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.10-12
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$-subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was. efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to consist of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t63I or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632-653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17-fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

TIMP-2 Gene Transfer Via Adenovirus Inhibits the Invasion of Lung Cancer Cell (TIMP-2 유전자 재조합 아데노바이러스의 폐암세포 침윤 억제 효과)

  • Oh, Yeon-Mok;Lee, Jae-Ho;Yoo, Chul-Gyu;Chung, Hee-Soon;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.2
    • /
    • pp.189-197
    • /
    • 2000
  • Background : Tissue inhibitor of metalloproteinase is a natural inhibitor that counteracts pro teolytic enzymes essential to the invasion of cancer cell. Whether or not TIMP-2 gene transfer via adenovirus could inhibit the invasion of lung cancer cell iη vitro was evaluated for the future purpose of gene therapy against lung cancer. Methods : Recombinant adenovirus-TIMP-2(Ad-TIMP-2) was generated by homologous recombination after pACCMV-TIMP-2 and pJM17 were cotransfected into 293 cell by standard calcium phosphate coprecipitate method. Calu-6, one of the most invasive lung cancer cells, was transduced with Ad-TIMP-2 or Ad-$\beta$gal. Anchorage-independent growth and invasiveness were assessed by soft agar clonogenicity assay and invasion assay using two-chamber, well divided by matrigel. Results : Ad-TIMP-2 transduced calu-6 cells produced biologically active TIMP-2 more than 50 times more than parental calu-6. TIMP-2 gene transfer did not suppress the in vitro tumorigenicity. However, two chamber well assay revealed that Ad-TIMP-2 transduction reduced the invasiveness of calu-6 efficiently (12% compared with parental cell) even at low 10moi. Conclusion : Even though TIMP-2 gene transfer did not inhibit in vitro tumorigenicity, it did inhibit invasion of lung cancer cell in vitro. The inhibition of invasion by Ad-TIMP-2 may be a useful strategy for the treatment of lung cancer.

  • PDF

Gene Expression Profiles and Antioxidant Effects of Houttuynia cordata Thunb Extract in Human Keratinocyte HaCaT Cells (인간 피부각질세포 HaCaT에서 어성초 추출물의 유전체 발현 분석 및 항산화 효과)

  • Kim, Jung Min;Bang, In Seok
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1406-1415
    • /
    • 2018
  • Based on the antioxidative effects in organic solvent fractions obtained from the main methanolic extract of Houttuynia cordata Thunb, the cytoprotective effects by oxidative-stress were here analyzed. Regarding the antioxidant activity of organic solvent fractions, the electron-donating ability of DPPH increased in a dose-dependent manner, and $ED_{50}$ exhibited the highest concentration at $175{\mu}g/ml$ in the Hc-EtOAc fraction. The cell viability of Hc-EtOAc fractions on $H_2O_2$-induced HaCaT cell death ($IC_{50}$) increased in a concentration-dependent manner and a visible cell survival rate of 74% was observed at a concentration of $100{\mu}g/ml$. Meanwhile, the gene expression patterns in HaCaT cells treated with $100{\mu}g/ml$ of the Hc-EtOAc fraction for 6 and 24 hr were identified with microarray analysis. The genes involved in signal transduction, cell division, antioxidant activity, and epithelial cell proliferation were found to be 2-fold up-regulated genes in HaCaT cells following the Hc-EtOAc fraction treatment. Especially, proinflammatory cytokines (IL1B, TNF, and IL6) were identified as involved in antioxidant activity based on the expression patterns of the HaCaT cells, and pathway analysis indicated that TLR4 might be considered an upstream regulator of these genes. In order to verify the activity of IL1B, TNF, and IL6, qRT-PCR showed that the expression increased more than 2 times in HaCaT cells treated with at least $100{\mu}g/ml$ of the Hc-EtOAc fraction. The activity of the upstream regulator TLR4 protein was also increased by the Hc-EtOAc fraction. As a result, the antioxidative activity of the Hc-EtOAc fraction is predicted to pass from TLR4 through cytokines such as IL1B, TNF, and IL6.

Role of Oxygen Free Radical in the Expression of Interleukin-8 and Interleukin-$1{\beta}$ Gene in Mononuclear Phagocytic Cells (내독소에 의한 말초혈액 단핵구의 IL-8 및 IL-$1{\beta}$ 유전자 발현에서 산소기 역할에 관한 연구)

  • Kang, Min-Jong;Kim, Jae-Yeol;Park, Jae-Seok;Lee, Seung-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.862-870
    • /
    • 1995
  • Background: Oxygen free radicals have generally been considered as cytotoxic agents. On the other hand, recent results suggest that small nontoxic amounts of these radicals may act a role in intracellular signal transduction pathway and many efforts to reveal the role of these radicals as secondary messengers have been made. It is evident that the oxygen radicals are released by various cell types in response to extracellular stimuli including LPS, TNF, IL-1 and phorbol esters, all of which translocate the transcription factor $NF{\kappa}B$ from cytoplasm to nucleus by releasing an inhibitory protein subunit, $I{\kappa}B$. Activation of $NF{\kappa}B$ is mimicked by exposure to mild oxidant stress, and inhibited by agents that remove oxygen radicals. It means the cytoplasmic form of the inducible tanscription factor $NF{\kappa}B$ might provide a physiologically important target for oxygen radicals. At the same time, it is well known that LPS induces the release of oxygen radicals in neutrophil with the activation of $NF{\kappa}B$. From above facts, we can assume the expression of IL-8 and IL-$1{\beta}$ gene by LPS stimulation may occur through the activation of $NF{\kappa}B$, which is mediated through the release of $I{\kappa}B$ by increasing amounts of oxygen radicals. But definitive evidence is lacking about the role of oxygen free radicals in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. We conducted a study to determine whether oxygen radicals act a role in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. Method: Human peripheral blood monocytes were isolated from healthy volunteers. Time and dose relationship of $H_2O_2$-induced IL-8 and IL-$1{\beta}$ mRNA expression was observed by Northern blot analysis. To evaluate the role of oxygen radicals in the expression of IL-8 and IL-$1{\beta}$ mRNA by LPS stimulation, pretreatment of various antioxiants including PDTC, TMTU, NAC, ME, Desferrioxamine were done and Northern blot analysis for IL-8 and IL-$1{\beta}$ mRNA was performed. Results: In PBMC, dose and time dependent expression of IL-8 and IL-$1{\beta}$ mRNA by exogenous $H_2O_2$ was not observed. But various antioxidants suppressed the expression of LPS-induced IL-8 and IL-$1{\beta}$ mRNA expression of PBMC and the suppressive activity was most prominant when the pretreatment was done with TMTU. Conclusion: Oxygen free radical may have some role in the expression of IL-8 and IL-$1{\beta}$ mRNA of PBMC but that radical might not be $H_2O_2$.

  • PDF