• 제목/요약/키워드: Protein Stabilization

검색결과 148건 처리시간 0.028초

A Novel Inhibitor of Translation Initiation Factor eIF5B in Saccharomyces cerevisiae

  • Ah-Ra Goh;Yi-Na Kim;Jae Hyeun Oh;Sang Ki Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1348-1355
    • /
    • 2024
  • The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.

인체 흑색종 세포주 SK-MEL-1에 대한 인삼 panaxynol의 항증식 효과 기전 (Molecular Mechanism of the Antiproliferative Effect by Ginseng Panaxynol on a Human Malignant Melanoma Cell Line, SK-MEL-1)

  • 조홍근;유수진;노주영;하영미;황우익;손정원
    • Journal of Ginseng Research
    • /
    • 제23권3호
    • /
    • pp.190-197
    • /
    • 1999
  • 본 연구는 인삼 panaxynol이 인체 흑색종 세포주 SK-MEL-1 미치는 항증식효과의 분자적 기전을 알아보고자, 세포주기와 세포주기 조절인자들의 발현변화, 단백질 합성 억제제와 proteasome억제제가 panaxynol의 항암효과에 미치는 영향을 조사하였다. panaxynol은 세포주기의 G1 단계 진행을 억제시켰으며, 동시에 $p21^{WAF1}$ 발현 증가와 cdc2의 발현 감소를 유발하였다. 이에 비해 p16, p27, E2F-1, Rb, p53의 발현에는 변화가 없었다. 이 결과는 panaxynol의 SK-MEL-1 세포에서 $p21^{WAF1}$의 발현을 증가시키고 cdc2의 발현을 감소시켜, 세포주기의 G1-S 이행 단계를 억제한다는 것을 보여준다 또한 CHX는 panaxynol의 항암효과를 감소시키고, LLnL은 panaxynol의 항암 효과를 증가시켰는데, 이는 panaxynol에 의한 SK-MEL-1 세포의 증식억제에 새로운 단백질 합성이 필요하며, LLnL이 panaxyno떼 의한 세포증식억제를 매개하는 $p21^{WAF1}$등의 단백질 분해를 저해시키기 때문인 것으로 생각된다.

  • PDF

7-디하이드로콜레스테롤을 함유한 키토산 코팅 처리 Solid Lipid Nano-particle의 개발에 관한 연구 (Development of Chitosan Coated Solid Lipid Nano-particles Containing 7-Dehydrocholesterol)

  • 이근수;김태훈;이천일;표형배;최태부
    • 대한화장품학회지
    • /
    • 제31권2호
    • /
    • pp.141-146
    • /
    • 2005
  • 불안정한 생리활성물질들은 외부 환경에 의해 빠르게 분해된다. 그러므로 이러한 물질들을 안정화시키기 위한 캡슐화 기술은 매우 중요하다. 비타민 $D_3$의 전구체인 7-디하이드로콜레스테롤(7-DHC)은 일반인의 표피 각화세포에서 열충격 단백질(Heat Shock Protein)의 발현을 단백질과 mRNA의 수준에서 증가시키는 것으로 알려졌다. 하지만 7-DHC의 국소용 피부 제제로의 이용은 낮은 용해도와 화학적 불안정성 때문에 이용이 제한되었다. 본 연구에서 7-DHC는 나노에멀젼(NE), 고형 지질 나노 입자 (SLN) 그리고 키토산이 코팅된 고형 지질 나노 입자(CASLN)에 봉입하였다. NE와 SLN은 지질의 용융점 이상의 온도에서 고압의 호모제나이져를 통과시켜 제조하였다. CASLN은 SLN 분산액에 키토산을 용액을 첨가하여 제조하였으며 양(+)의 제타전위를 나타내었다. NE, SLN, CASLN 속에서 7-DHC의 안정도를 각각의 온도조건에서 시간의 경과에 따라 확인하였다. 열분석과 X선 회절 분석은 지질의 결정화 정도를 확인하기 위해서 수행하였다. 그 결과, CASLN은 기존의 SLN보다 불안정한 7-DHC를 효과적으로 봉입함으로서 안정성을 개선시켰다.

박테리아의 toxin-antitoxin system과 생명공학기술 응용 (Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications)

  • 김윤지;황지환
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) system은 박테리아와 고세균에서 진화적으로 보존되어 흔히 발견되는 유전적 모듈이다. 기본적으로 이 시스템은 세포 내 toxin과 그들의 억제자로 작용하는 antitoxin으로 구성되어있으며, 현재 총 다섯가지 유형으로 구분된다. 공통적으로 toxin은 스트레스 조건에서 활성화됨으로써 세포 내 다양한 과정을 억제하는 활성을 가지는데 이는 결과적으로 세포 사멸 혹은 가역적인 생장 저해를 일으킨다. Toxin의 이러한 효과들은 유전자 발현의 조절, 성장 조절, programmed cell arrest, programmed cell death, persister cell의 형성, 박테리오파지 방어기작, 가동성 유전인자의 안정화, 플라스미드 유지 기작 등 다양한 생리학적 역할을 나타낸다. 그러므로 TA system은 일반적인 스트레스 반응모듈로서 여겨진다. 하지만 이를 역이용한다면 TA system으로부터 toxin을 활성화 시키는 인자를 개발하여 새로운 항균 물질로 이용할 수 있다. 그뿐만 아니라 TA system은 toxin의 세포 사멸 효과를 이용하여 원하는 타겟 유전자가 존재하는 세포만 선택적으로 살아남도록 하는 효율적인 클로닝 전략에 이용될 수 있다. 또한, toxin의 서열 특이적 리보핵산 가수분해효소 활성을 이용하여 타겟 단백질 이외의 단백질 합성을 막아 효과적인 단일 단백질 대량 생산을 위해서도 이용할 수 있다. 더 나아가 일부 TA system의 toxin은 진핵 세포에서도 세포 독성을 나타내기 때문에 암세포, 바이러스 감염 세포에서 toxin의 발현을 유도하여 세포사멸을 일으킴으로써 인간의 질병 치료로 이어질 수 있다.

Novel pH/Temperature Sensitive Hydrogels of Poly (ethylene glycol)-Poly (caprolactone) -Poly (${\beta}-amino\;ester$) (PAE-PCLA-PEGPCLA-PAE) Biodegradable Polyester Block Copolymer

  • Huynh Dai Phu;Lee Doo-Sung
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.263-263
    • /
    • 2006
  • Poly (ethylene glycol)(PEG) - Poly (${\varepsilon}-caprolactone(CL)$) - Poly (D,L lactide(LA) (PCLA-PEG-PCLA) was synthesized by ring-opening polymerization to form temperature sensitive hydrogel triblock copolymer. The triblock copolymer was acrylated by acryloyl chloride. ${\beta}-amino$ ester was used as a pH sensitive moiety, in this study ${\beta}$- amino ester obtained from 1,4-butandiol diacrylate, and 4, 4' trimethylene dipiperidine, it have pKb around 6.6. pH/temperature sensitive penta-block copolymer (PAE-PCL-PEG-PCL-PAE) was synthesized by addition polymerization from acrylated triblock copolymer, 1,4-butandiol diacrylate, and 4, 4' trimethylene dipiperidine. Their physicochemical properties of triblock and penta-block copolymers were characterized by $^1H-NMR$ spectroscopy and gel permeation spectroscopy. Sol-gel phase transition behavior of PAE-PCL-PEG-PCL-PAE block copolymers were investigated by remains stable method. Aqueous media of the penta-block copolymer (at 20 wt%) changed from a sol phase at pH 6.4 and $10^{\circ}C$ to a gel phase at pH 7.4 and $37^{\circ}C$. The sol-gel transition properties of these block copolymers are influenced by the hydrophobic/hydrophilic balance of the copolymers, block length, hydrophobicity, stereo-regularity of the hydrophobic of the block copolymer, and the ionization of the pH function groups in the copolymer depended on the changing of environmental pH, respectively. The degradation and the stabilization at pH 7.4 and $37^{\circ}C$, and the stabilization at pH 6.4 and $10^{\circ}C,\;5^{\circ}C,\;0^{\circ}C$, of the gel were determined. The results of toxicity experiment show that the penta block copolymer can be used for injection drug delivery system. The sol?gel transition of this block copolymer also study by in vitro test ($200{\mu}l$ aqueous solution at 20wt% polymer was injected to mouse). Insulin loading and releasing by in vitro test was investigated, the results showed that insulin can loading easily into polymer matrix and release time is around 14-16days. The PAE-PCL-PEG-PCL-PAE can be used as biomaterial for drug, protein, gene loading and delivery.

  • PDF

Systemic TM4SF5 overexpression in ApcMin/+ mice promotes hepatic portal hypertension associated with fibrosis

  • Joohyeong, Lee;Eunmi, Kim;Min-Kyung, Kang;Jihye, Ryu;Ji Eon, Kim;Eun-Ae, Shin;Yangie, Pinanga;Kyung-hee, Pyo;Haesong, Lee;Eun Hae, Lee;Heejin, Cho;Jayeon, Cheon;Wonsik, Kim;Eek-Hoon, Jho;Semi, Kim;Jung Weon, Lee
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.609-614
    • /
    • 2022
  • Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2005년도 2005 Annual Meeting & International Symposium
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제38권1호
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.

고율 조류 생세포체 배양지에서 조사 조건으로 본 조류 배양 특성 (Algae Culture Characteristics Viewed with Continuous and Cyclic Irradiation in High Rate Algae Biomass Culture Pond)

  • 공석기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.123-129
    • /
    • 1999
  • The utilization methods of algae biomass have been studied constantly in whole world. These are $\circled1$the wastewater treatment if waste stabilization pond and oxidation ditch etc. and $\circled2$the biosorption of heavy metals and recovery of strategic' precious metals and $\circled3$the single-celled protein production and the production of chemicals like coloring agent and $\circled4$the production of electric energy through methane gasification. The culture system also has been developed constantly in relation with such utilization method developments. In the result of experimental operation under continuous and cyclic irradiation of light, using high rate algae biomass culture pond(HRABCP), which had been made so as to be an association system with the various items which had been managed to have high efficiency for algae culture, the algae production of the 12 hours-irradiance pond was 41.48 Chlorophyll-a ${\mu}g/L$ only in spite of having the more chance of $CO_2$ synthesis to algae cell than the 24 hours-irradiance pond. This means that the energy supply required for dark-reaction of photosynthesis is very important like this. The difference of algae production between continuous and cyclc irradiation explains that the dark-reaction of photosynthesis acts on algae production as the biggest primary factor. The continuous irradiance on HRABCP made the good algae-production($1403.97{\;}{\mu}g$ Chlorophyll-a/mg) and the good oxygen-production(5.8 mg $O_2/L$) and the good solid-liquid seperation. especially, DO concentration through the oxygen-production was enough to fishes' survival.

  • PDF