• Title/Summary/Keyword: Protein Solution

Search Result 1,077, Processing Time 0.031 seconds

Comparative Quantitative Study of Surfactant Protein C mRNA by Filter Hybridization and Solution Hybridization in Rats (Filter Hybridization과 Solution Hybridization 방법에 의한 백서 Surfactant Protein C mRNA 정량측정의 비교)

  • Kim, Jin-Ho;Sohn, Jang-Won;Yang, Seok-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.6
    • /
    • pp.517-529
    • /
    • 2001
  • Background : Surfactant protein C(SP-C) is a hydrophobic 5,000 dalton molecule. SP-C has the primary roles in accelerating surface spreading of a surfactant phospholipid. The filter hybridization and solution hybridization assays are both rapid and sensitive and can be used to measure the RNAs complementary to any cloned DNA sequence. Methods : The authors measured the SP-C mRNA levels quantitatively using solution hybridization and filter hybridization assays to obtain a standard curve equation to quantify the mRNA of unknown samples comparatively. Results : 1. The minimum level of the specimens by solution hybridization was 3 pg for SP-C mRNA. 2. The standard curve equation of the solution hybridization assay between the counts per minute(Y) and the SP-C mRNA transcript input(X) was Y=6.46 X+244. The correlation coefficient was 0.99. 3. The minimum detection level of specimens by filter hybridization was 0.1 ng for SP-C mRNA. 4. The standard curve equation of the filter hybridization assay between the counts per minute(Y) and SP-C mRNA transcript input(X) is Y=2541.6 X+252.7. The correlation coefficient was 0.99. Conclusions : A comparison of CPM/filter in the linear range allowed an accurate and reproducible estimation of the SP-C mRNA copy number. Filter hybridization and solution hybridization assays are both rapid and sensitive and can be used to measure the RNAs complementary to any cloned DNA sequence. It is ideally suited to situations where accurate quantitation of multiple samples is required.

  • PDF

Effect of Sodium Chloride Intake Related to the Composition of the Diet (식이조성(食餌組成)에 따른 식염섭취량(食鹽攝取量)에 관(關)한 연구(硏究))

  • Kim, Kap-Young;Lee, Ki-Yull;Shin, Tai-Sun
    • Journal of Nutrition and Health
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 1973
  • Sodium chloride plays an important role as the main condiment at daily meal. It is well known that humans require sodium chloride as an essential nutrient to keep the homeostasis of electrolytes. The amounts of salt intake may be a reflection of geography, culture and food habit rather than necessity. Lee has reported (1962) that Koreans ingest high amounts of sodium chloride in their meals, with an intake of excess carbohydrate (80-90% of total Calories) and low protein in their diet. This includes large amounts of rice, Kimchi and other fermented soybean products common in the Korean diet. This investigation was designed to study the dietary relations of sodium chloride to other nutrients in the Korean diet. Twenty four albino male rats, weighing from 290-300g, were divided into four dietary groups according to the amounts of carbohydrate, protein and fat in the basal diet. Each diet contained a rice powder as a carbohydrate source. Diet I was a control diet, Diet II, low protein, Diet III, low protein and low fat diet and Diet IV, low fat diet. All rats were provided with 3% sodium chloride solution. Diet and salt solution were given ad libitum. The experiment was carried out for 9 weeks during which time the body weight, the food intake, and 3% sodium chloride solution consumption were determined. At the 9th week, the urine was collected the blood sample from the artery of each rat for the analysis of sodium and potassium and other chemical studies. The rats were sacrificed and the kidney, adrenal, liver and spleen were measured, and observed changes of the pathological tissue in the kidney and adrenal. The results were summarized as follows: 1) The growth rate was higher in Diet I than in the other experimental diets (II, III and IV) after 4 weeks. There was no significant difference found between the experimental Diets II, III and IV. 2) The daily food intake was greater in the experimental diets II, III and IV than in the control diet. However, there was no difference among the high carbohydrate diets Diet II, III and IV. 3) The daily water (3% sodium chloride solution) intake was also greater in the Diets II, III and IV, than in the control diet. However, there was no difference between Diets II, III and IV. 4) The concentration of sodium and potassium in the blood were within the normal range in all diets. 5) The amount of sodium chloride in the urine was significantly greater in Diets II, III and IV than in the control diet. Diets II, III, IV had a larger amount of sodium solution consumption. 6) Observation of pathological tissue in the experimental diets found a cell proliferation in the glomerlulus of the kidney, while such change was not found in the control diet.

  • PDF

Preparation of Edible film from Fish Protein (어육 단백질을 이용한 가식성 필름의 제조)

  • Song Ki Cheol;Mok Jong Soo;Kang Chang Su;Chang Soo Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.247-252
    • /
    • 2002
  • To prepare the edible film based on fish protein, the optimal conditions for extracting soluble protein from Alaska pollack ( Theragra chalcogramma) and mackerel (Scomber japonious) muscle were defined. The effects of protein concentration, pH and temperature of protein solution on the physical properties of films were also investigated, Contents of moisture, crude protein, crude lipid and ash in Alaska pollack muscle were 79.6, 18.2, 0.6 and $1.2\%$, respectively. Contents of moisture, crude protein, crude lipid and ash in mackerel muscle were 69,1, 20.1, 9,5 and $1.3\%$, respectively. Both soluble protein contents extracted from Alaska pollack and mackerel were the highest at pH 12.0, and then un 2.0, 11.0. But they were extracted a little at neutral range. forward the recovery yield of protein by controlling isoelectric point was the highest at pH 4.8 ($79.8\%$) for Alaska pollack and at pH 5.0 ($64.1\%$) for mackerel, For the preparation of protein films from both Alaska pollack and mackerel, the most effective conditions of film forming solution were achieved, after supplied fish protein 4 g (glycerol 1,6 g) in 100 mL of distilled water, by adjusted to pH 10.0 and then heated at $90^{\circ}C$.

Fast Protein Staining in Sodium Dodecyl Sulfate Polyacrylamide Gel using Counter ion-Dyes, Coomassie Brilliant Blue R-250 and Neutral Red

  • Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2002
  • A fast and sensitive protein staining method in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using both an acidic dye, Coomassie Brilliant Blue R-250 (CBBR) and a basic dye, Neutral Red (NR) is described. It is based on a counter ion-dye staining technique that employs oppositely charged two dyes to form an ion-pair complex. The selective binding of the free dye molecules to proteins in an acidic solution enhances the staining effect of CBBR on protein bands, and also reduces gel background. It is a rapid staining procedure, involving fixing and staining steps with short destaining that are completed in about 1 h. As the result, it showed two to fourfold increase in sensitivity comparing with CBBR staining. The stained protein bands can be visualized at the same time of staining.

Structural Studies of Membrane Protein by Solid-state NMR Spectroscopy (고체상 핵자기공명 분광법을 이용한 막단백질의 구조연구)

  • Kim, Yongae
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.388-392
    • /
    • 2004
  • Structural studies of membrane proteins, importantly involving interpretation of genomics information, many signaling pathway and major drug target for drug discovery, are having difficulty in characterizing the function using conventional solution nmr spectroscopy and x-ray crystallography because phospholipid bilayers hindered fast tumbling and crystallization. Here, we studied the structure of the pf1 coat protein in oriented phospholipid bilayers by home-built solid-state NMR probe. Bacteriophage pf1 was purified from Paeudomonas Aeruginosa and coat protein of bacteriophage pf1 was isolated from DNA and other proteins.

Quality characteristics of plant-based whipped cream with ultrasonicated pea protein

  • Insun Kim;Kwang-Deog Moon
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.64-79
    • /
    • 2024
  • The rise in popularity of vegetarian and plant-based diets has led to extensive research into plant-based whipped creams. Whipped cream is an oil-in-water emulsion that creates foam through whipping, stabilizing the foam with proteins and fats. Pea protein is an excellent emulsifier and foaming agent among plant-based proteins, but its application in whipped cream is currently limited. The objective of this study was to investigate the quality characteristics of plant-based whipped cream made with ultrasonicated pea protein. The whipped creams were evaluated based on their quality characteristics. A commercially available dairy whipped cream (CON) was used as a control. Plant-based creams were evaluated using pea protein solution, cocoa butter, and canola oil to produce un-ultrasonicated pea protein whipped cream (PP) and ultrasonicated pea protein whipped cream (UPP) at 360 W for 6 min. UPP significantly reduced whipping time and foam drainage compared with CON and PP, resulting in significantly increased overrun, fat destabilization, and hardness. Optical microscopy showed that UPP had smaller fat globules and bubble size than PP. The fat globules of UPP and CON were mostly below 5 ㎛, whereas those of PP were distributed at 5-20 ㎛. Finally, ultrasonication significantly improved the overrun, foam drainage, fat destabilization, and hardness of UPP, which are significant quality characteristics of whipped creams. Therefore, ultrasonicated plant-based pea protein whipped cream is believed to be a viable alternative to dairy whipped cream.

Studies on the Functional Properties of Sesame and Perilla Protein Isolate (참깨와 들깨 단백질의 기능성에 관한 연구)

  • Park, Hyun-Sook;Ahn, Bin;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.350-356
    • /
    • 1990
  • Functional properties such as nitrogen solubility, emulsifying property, foaming property, and water and oil absorption of sesame and perilla protein isolates were determined at pH range of 2-10 and ionic strength of 0-0.5M NaCl. Nitrogen solubility of protein isolates in distilled water showed minimum value at pH6.0 in sesame and at pH 4.0 in perilla and soybean protein isolates, and significantly increased above pH 8.0 in all samples. Addition of 0.1M NaCl solution increased nitrogen solubility, however, decreased in 0.5M NaCl solution. Emulsion activities of all the protein isolates showed minimum value at pH 4.0 and increased in 0.1M NaCl solutions while it was reduced in 0.5M NaCl solutions. The perilla protein isolate showed higher emulsion activity than that of soybean and sesame protein isolates at above pH 6.0. Foaming capacities of sesame and perilla protein isolates were lower than soybean protein isolate and generally all of the samples showed higher profiles in NaCl solutions. The foaming stability of soybean isolate decreased abruptly in 10min, while it was slowly decreased for sesame and perilla isolates during initial 30 min. Oil absorption capacity of perilla protein isolate was higher than that of sesame and soybean protein isolates. Water absorption capacity was similar among the three samples studied.

  • PDF

Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium (발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현)

  • Park, Jung-Won;Park, Byung-Ki;Kim, Sang-Mok;Kim, Byung-Ock;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

Textural and Organoleptic Properties of Tofu Manufactured with Micronized Full-fat Soyflour Fortified with Food Ingredients

  • Shim, Jae-Jin;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.278-283
    • /
    • 2003
  • Textural properties of tofu manufactured with micronized full-fat soyflour (MFS) were enhanced by the addition of soy protein isolate, whey protein concentrate, chitosan oligosaccharide and mushroom powder. The MFS solution (14.2% solid content) was converted to semi-solid tofu by a two-stage heat treatment with the addition of 4% coagulant mix. The MFS tofu was evaluated by a compression test as well as sensory evaluation. To produce the semi-solid gel (MFS tofu) with reasonably high strength and toughness, the MFS solution with 14.2% solid content and 7.0% protein had to be heat treated at 121$^{\circ}C$ for 3min. The relative toughness of MFS tofu was increased by the addition of SPI, showing a 144% increase. The toughness of MFS tofu prepared with the MFS/SPI mixture was greatly increased by the addition of WPC at the level of 0.7% and the water separation from MFS tofu was greatly reduced. Furthermore, the toughness and strength of MFS/SPI tofu was enhanced by the addition of 0.1% chitosan oligosaccharide and 0.2% mushroom powder. The sensory evaluation of the tofu fortified with SPI, chitosan oligosaccharide and mushroom powder was superior to that of MFS tofu, with a higher score for overall preference.

Generation of Reactive Oxygen Species by Nonenzymatic Reaction of Menadione with Protein Thiols in Plasma (Menadione과 Plasma내의 Protein Thiol의 비효소적인 화학반응에 의한 활성산소 생성)

  • 정선화;이무열;이주영;장문정;정진호
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 1997
  • Quinones have been reported to undergo nonenzymatic reaction with thiols to generate reactive oxygens. It is therefore possible that the nonenzymatic reaction of quinones with thiols in plasma could lead to potentJared cellular toxicity or disease. When 1 mM menadione was added in plasma under pH 11.2, 7.4 and 5.0, the increase in oxygen consumption rate was the order of pH 11.2 > pH 7.4 > pH 5.0. In addition, oxygen consumption rates under plasma anticoagulated with trisodium citrate solution (pH 7.85) was significantly higher than those with acid-citrate-dextrose solution (pH 6.87). SOD and catalase reduced the rate of oxygen consumption induced by menadione in plasma. Taken together, these results suggest that the menadione-induced increased oxygen consumption was due to nonenzymatic reaction of menadione with thiols in the plasma. The presence of plasma has an additive effect on the increased oxygen consumption rates induced by the menadione treatments on our model tissue, platelets, as compared between washed platelet (WP) and platelet rich plasma (PRP). Cytotoxicity, as determined by LDH release, are well correlated with the oxygen consumption rates observed in each system and strongly suggest that menadione-induced cytotoxicity can be increased with the presence of blood plasma.

  • PDF