• Title/Summary/Keyword: Protein Secondary Structure

Search Result 179, Processing Time 0.02 seconds

A Protein Structure Comparison System based on PSAML (PSAML을 이용한 단백질 구조 비고 시스템)

  • Kim Jin-Hong;Ahn Geon-Tae;Byun Sang-Hee;Lee Su-Hyun;Lee Myung-Joon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.2
    • /
    • pp.133-148
    • /
    • 2005
  • Since understanding of similarities and differences among protein structures is very important for the study of the relationship between structure and function, many protein structure comparison systems have been developed. Hut, unfortunately, these systems introduce their own protein data derived from the PDB(Protein Data Bank), which are needed in their algorithms for comparing protein structures. In addition, according to the rapid increase in the size of PDB, these systems require much more computation to search for common substructures in their databases. In this paper, we introduce a protein structure comparison system named WS4E(A Web-Based Searching Substructures of Secondary Structure Elements) based on a PSAML database which stores PSAML documents using the eXist open XML DBMS. PSAML(Protein Structure Abstraction Markup Language) is an XML representation of protein data, describing a protein structure as the secondary structures of the protein and their relationships. Using the PSAML database, the WS4E provides web services searching for common substructures among proteins represented in PSAML. In addition, to reduce the number of candidate protein structures to be compared in the PSAML database, we used topology strings which contain the spatial information of secondary structures in a protein.

Backbone 1H, 15N, and 13C Resonance Assignment and Secondary Structure Prediction of HP0495 from Helicobacter pylori

  • Seo, Min-Duk;Park, Sung-Jean;Kim, Hyun-Jung;Seok, Seung-Hyeon;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.839-843
    • /
    • 2007
  • HP0495 (Swiss-Prot ID; Y495_HELPY) is an 86-residue hypothetical protein from Helicobacter pylori strain 26695. The function of HP0495 cannot be identified based on sequence homology, and HP0495 is included in a fairly unique sequence family. Here, we report the sequencespecific backbone resonance assignments of HP0495. About 97% of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were assigned unambiguously. We could predict the secondary structure of HP0495, by analyzing the deviation of the $^{13}C{\alpha}$ and $^{13}C{\beta}$ shemical shifts from their respective random coil values. Secondary structure prediction shows that HP0495 consists of two $\alpha$-helices and four $\beta$-strands. This study is a prerequisite for determining the solution structure of HP0495 and investigating the protein-protein interaction between HP0495 and other Helicobacter pylori proteins.

Clustered Segment Index for Efficient Approximate Searching on the Secondary Structure of Protein Sequences (클러스터 세그먼트 인덱스를 이용한 단백질 이차 구조의 효율적인 유사 검색)

  • Seo Min-Koo;Park Sang-Hyun;Won Jung-Im
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.251-260
    • /
    • 2006
  • Homology searching on the primary structure (i.e., amino acid arrangement) of protein sequences is an essential part in predicting the functions and evolutionary histories of proteins. However, proteins distant in an evolutionary history do not conserve amino acid residue arrangements, while preserving their structures. Therefore, homology searching on proteins' secondary structure is quite important in finding out distant homology. In this manuscript, we propose an indexing scheme for efficient approximate searching on the secondary structure of protein sequences which can be easily implemented in RDBMS. Exploiting the concept of clustering and lookahead, the proposed indexing scheme processes three types of secondary structure queries (i.e., exact match, range match, and wildcard match) very quickly. To evaluate the performance of the proposed method, we conducted extensive experiments using a set of actual protein sequences. CSI was proved to be faster than the existing indexing methods up to 6.3 times in exact match, 3.3 times in range match, and 1.5 times in wildcard match, respectively.

NMR Structural Analysis and 3D Homology Modelling of APG8a from Arabidopsis thaliana

  • Chae Young-Kee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.96-104
    • /
    • 2006
  • The gene coding for APG8a (At4g21980), a protein from Arabidopsis thaliana, is involved in the autophagy process. The protein is an interesting candidate for structure determination by NMR spectroscopy. Toward this end, APG8a has been produced recombinantly in Escherichia coli and typical NMR experiments such as $^{15}N-HSQC$, HNCA, HN(CO)CA, CBCA(CO)NH, HCCH-TOCSY, HNCO were performed. The backbone resonances, HN, N, CA, CB, and C' were sequence-specifically assigned, and the secondary structures including 3 $\alpha$ helices and $4\beta$ strands were deduced based on the assignments. Due to the intrinsic flexibility or the effect of the denaturant, the backbone resonances were not fully observed. Since the structure calculation by NMR data was not possible, the 3-dimensional model was built based on the sequence homology, and compared with the NMR results. The overall structure of the model could explain and complement the NMR derived secondary structures.

  • PDF

Backbone NMR Assignments and Secondary Structure Determination of a Cupin-family Protein YaiE from Escherichia coli

  • Lee, Sung-Hee;Sim, Dae-Won;Kim, Eun-Hee;Kim, Ji-Hun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.50-54
    • /
    • 2017
  • Cupin-superfamily proteins represent the most functionally diverse groups of proteins and include a huge number of functionally uncharacterized proteins. Recently, YaiE, a cupin protein from Escherichia coli has been suggested to be involved in a novel activity of pyrimidine/purine nucleoside phosphorylase (PPNP). In the present study, we achieved a complete backbone NMR assignments of YaiE, by a series of heteronuclear multidimensional NMR experiments on its [$^{13}C/^{15}N$]-enriched sample. Subsequently, secondary structure analysis using the assigned chemical shift values identified 10 obvious ${\beta}-strands$ and a tentative $3_{10}-helix$. Taken all together, the results constitute the first structural characterization of a putative PPNP cupin protein.

Biomineralization Strategy of Biocomposites on Regenerated Shell: Chitin Synthesis and Regenerated Shell Formtation by Deformed Oyster Shell (생체복합체의 재생패각 합성전략: 참굴 패각의 변형에 따른 키틴 합성 및 패각재생)

  • Lee, Seungwoo;Park, Seungbin;Yeong, Donghee;Choi, Cheongsong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.529-534
    • /
    • 2008
  • The normal shell and the regenerated oyster shell, Crassostrea gigas, are separated according to the characteristics of inner shell morphology. To study characteristics of chitin obtained from the regenerated shell, chitin prepared by acid and alkali process is analyzed by FT-IR (Fourier transform infrared spectrometer) and XRD (X-ray Diffractometer). The content of insoluble protein in the normal shell was more than doubled as compared with that in the regenerated shell. A comparison of secondary structure of the normal shell and the regenerated shell revealed that the content of random of the regenerated shell was above 47%, indicating an amount in the structural unordered state. Through amino acid composition analysis and secondary protein structure of soluble protein isolated from the normal shell and the regenerated shell, it was found that there are differences in biomineralization strategy of the regenerated shell as compared to the normal shell. The relatively low hardness of the regenerated shell is caused by the change of amino acid composition and ordered secondary protein structure as compared to hardness of the normal shell.

Purification and Backbone Assignment of the Hypothetical Protein MTH1821 from Methanobacterium Thermoautotrophicum H

  • Kwak, Soo-Young;Lee, Woong-Hee;Shin, Joon;Ko, Sung-Geon;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 2007
  • MTH1821 (UniProtKB/TrEMBL ID O27849) is a 96-residue hypothetical protein from the open reading frame of Methanobacterium thermoautotrophicum H one of the target organisms of structural genomics pilot project. Proteins which contain conserved sequence compared with MTH1821 have not been discovered yet and the functional and structural information for MTH1821 is not available. Here, we present the sequence-specific backbone resonance using multidimensional heteronuc1ear NMR spectroscopy and propose the secondary structure using GetSBY software. The backbone resonances of N, HN, $C_{\alpha}$, $C_{\beta}$, CO and $H_{\alpha}$ which are necessary for a prediction of secondary structure by GetSBY were assigned about 98% (557/568). The secondary structure of MTH1821 confirmed that it is comprised of four strand regions and two helical regions. This report will provide a valuable resource for the calculation solution structure of MTH1821 and for the other hypothetical protein that is targeted for structural-based functional discovery.

  • PDF

Prediction of Protein Secondary Structure Content Using Amino Acid Composition and Evolutionary Information

  • Lee, So-Young;Lee, Byung-Chul;Kim, Dong-Sup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • There have been many attempts to predict the secondary structure content of a protein from its primary sequence, which serves as the first step in a series of bioinformatics processes to gain knowledge of the structure and function of a protein. Most of them assumed that prediction relying on the information of the amino acid composition of a protein can be successful. Several approaches expanded the amount of information by including the pair amino acid composition of two adjacent residues. Recent methods achieved a remarkable improvement in prediction accuracy by using this expanded composition information. The overall average errors of two successful methods were 6.1% and 3.4%. This work was motivated by the observation that evolutionarily related proteins share the similar structure. After manipulating the values of the frequency matrix obtained by running PSI-BLAST, inputs of an artificial neural network were constructed by taking the ratio of the amino acid composition of the evolutionarily related proteins with a query protein to the background probability. Although we did not utilize the expanded composition information of amino acid pairs, we obtained the comparable accuracy, with the overall average error being 3.6%.

  • PDF

Designing Signal Peptides for Efficient Periplasmic Expression of Human Growth Hormone in Escherichia coli

  • Jeiranikhameneh, Meisam;Moshiri, Farzaneh;Falasafi, Soheil Keyhan;Zomorodipour, Alireza
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1999-2009
    • /
    • 2017
  • The secretion efficiency of a protein in a Sec-type secretion system is mainly determined by an N-terminal signal peptide and its combination with its cognate protein. Five signal peptides, namely, two synthetic Sec-type and three Bacillus licheniformis alpha-amylase-derived signal peptides, were compared for periplasmic expression of the human growth hormone (hGH) in E. coli. Based on in silico predictions on the signal peptides' cleavage efficiencies and their corresponding mRNA secondary structures, a number of amino acid substitutions and silent mutations were considered in the modified signal sequences. The two synthetic signal peptides, specifically designed for hGH secretion in E. coli, differ in their N-terminal positively charged residues and hydrophobic region lengths. According to the mRNA secondary structure predictions, combinations of the protein and each of the five signal sequences could lead to different outcomes, especially when accessibility of the initiator ATG and ribosome binding sites were considered. In the experimental stage, the two synthetic signal peptides displayed complete processing and resulted in efficient secretion of the mature hGH in periplasmic regions, as was demonstrated by protein analysis. The three alpha-amylase-derived signal peptides, however, were processed partially from their precursors. Therefore, to achieve efficient secretion of a protein in a heterologous system, designing a specific signal peptide by using a combined approach of optimizations of the mRNA secondary structure and the signal peptide H-domain and cleavage site is recommended.

Characteristics of protein extracted from oyster shell (굴의 패각으로부터 추출된 단백질의 특성연구)

  • Lee, Seung-Woo;Sin, Na-Yeong;Choe, Cheong-Song
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.37-40
    • /
    • 2001
  • We showed the result that an appreciable difference of secondary structures in the intracrystlline protein was observed between Normal and Deform shells. In order to understand the exact secondary structure of proteins, we investigated the changes in protein conformation from the specific layers via Fourier Self-Deconvolution(FSD) techniques, using ATR(Attenuated Total Reflection) information.

  • PDF