• 제목/요약/키워드: Protein Kinase A

Search Result 2,491, Processing Time 0.043 seconds

Inhibitory Effect of Glycoprotein Isolated from Cudrania tricuspidata Bureau on Histamine Release and COX-2 Activity in RBL-2H3 Cells (RBL-2H3 세포에 있어서 꾸지뽕 당단백질에 의한 히스타민 방출 및 COX-2 활성 억제 효과)

  • Oh, Phil-Sun;Lee, Hye-Jin;Lim, Kye-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study was to determine the inhibitory effect of a glycoprotein isolated from Cudrania tricuspidata Bureau (CTB glycoprotein, 75 kDa) on immunoglobulin E (IgE)-induced allergic inflammation in RBL-2H3 cells. This experiment evaluated the production of intracellular reactive oxygen species (ROS), the activities of mitogenactivated protein kinase (MAPK), transcription factor (c-jun), and cyclooxygenase (COX)-2, and histamine release in cells. The results showed that the CTB glycoprotein inhibited histamine release and COX-2 expression induced by IgE in the cells. The CTB glycoprotein also had suppressive effects on the expressions of ERK1/2, p38 MAPK, c-jun, and the production of intracellular ROS in IgE-treated RBL-2H3 cells. The activities of c-jun and COX-2 were collectively blocked by ERK1/2 inhibitor (PD98059) and p38 MAPK inhibitor (SKF86002), respectively. Hence, we speculate that CTB glycoprotein might be a component with potential use in the preparation of health supplements for the prevention of allergic diseases.

The antioxidant icariin protects porcine oocytes from age-related damage in vitro

  • Yoon, Jae-Wook;Lee, Seung-Eun;Park, Yun-Gwi;Kim, Won-Jae;Park, Hyo-Jin;Park, Chan-Oh;Kim, So-Hee;Oh, Seung-Hwan;Lee, Do-Geon;Pyeon, Da-Bin;Kim, Eun-Young;Park, Se-Pill
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.546-557
    • /
    • 2021
  • Objective: If fertilization does not occur within a specific period, the quality of unfertilized oocytes in the oviduct (in vivo aging) or in culture (in vitro aging) will deteriorate over time. Icariin (ICA), found in all species of Epimedium herbs, has strong antioxidant activity, and is thought to exert anti-aging effects in vitro. We asked whether ICA protects oocytes against age-related changes in vitro. Methods: We analyzed the reactive oxygen species (ROS) levels and expression of antioxidant, maternal, and estrogen receptor genes, and along with spindle morphology, and the developmental competence and quality of embryos in the presence and absence of ICA. Results: Treatment with 5 μM ICA (ICA-5) led to a significant reduction in ROS activity, but increased mRNA expression of glutathione and antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, peroxiredoxin 5, and nuclear factor erythroid 2-like 2), during aging in vitro. In addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and increased mRNA expression of cytoplasmic maturation factor genes (bone morphogenetic protein 15, cyclin B1, MOS proto-oncogene, serine/threonine kinase, and growth differentiation factor-9). It also prevented apoptosis, increased mRNA expression of antiapoptotic genes (BCL2-like 1 and baculoviral IAP repeat-containing 5), and reduced mRNA expression of pro-apoptotic genes (BCL2 antagonist/killer 1 and activation of caspase-3). Although the maturation and cleavage rates were similar in all groups, the total cell number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were higher and lower, respectively, in the control and ICA-5 groups than in the aging group. Conclusion: ICA protects oocytes against damage during aging in vitro; therefore, it can be used to improve assisted reproductive technologies.

Cold Hardiness Change in Solenopsis japonica (Hymenoptera: Formicidae) by Rapid Cold Hardening (급속내한성 유기에 의한 일본열마디개미(Solenopsis japonica)의 내한성 변화)

  • Park, Youngjin;Vatanparast, Mohammad;Lee, Jieun
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.193-199
    • /
    • 2021
  • Solenopsis japonica, which is belonging to Formicidae in Hymenoptera, is a native ant species in Korea. However, it had not been studied for cold hardiness of S. japonica to understand on its overwintering mechanisms in field so far. Cold tolerance on developmental stages was measured at different cold temperature with various exposure times. Workers showed more survival at 5℃ and 10℃ compared with other stages and elevated cold tolerance when workers were exposed at 15℃ for more than 12h incubation as a rapid cold hardening (RCH) condition. RCH treatment not only increased survival of workers at cold temperatures, but also decreased supercooling point (SCP) and freezing point (FP). RCH group increased the survival rate by 44% at 10℃ compared with Non-RCH group. SCP and FP were depressed from -10.0 to -14.2℃ and from -11.3 to -15.3℃, respectively, after RCH treatment. Cold temperature increased expression level of cold- and stress-related genes such as glycerol kinase and heat shock protein. These results indicate unacclimated cold tolerance of S. japonica and its acclimation to low temperature by RCH.

Genome-wide identification, organization, and expression profiles of the chicken fibroblast growth factor genes in public databases and Vietnamese indigenous Ri chickens against highly pathogenic avian influenza H5N1 virus infection

  • Anh Duc Truong;Ha Thi Thanh Tran;Nhu Thi Chu;Huyen Thi Nguyen;Thi Hao Vu;Yeojin Hong;Ki-Duk Song;Hoang Vu Dang;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.570-583
    • /
    • 2023
  • Objective: Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. Methods: Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. Results: A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen-activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92-0.95, p<0.01). Conclusion: This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.

Comparison of the Effects of Pharmacopuncture Extracts with Hominis placenta Pharmacopuncture and Wild Ginseng Pharmacopuncture on the Differentiation of C2C12 Myoblasts into Myotubes through Regulation of the AMPK/SIRT1 Signaling Pathway (자하거약침액과 산삼약침액의 C2C12 근아세포에서의 AMPK/SIRT1 신호전달을 통한 근 분화 유도 및 에너지 대사 증진 효과 비교)

  • Ji Hye Hwang;Hyo Won Jung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.60-68
    • /
    • 2023
  • Objectives: This study was conducted to compare the effects of Hominis placenta (Jahage, J) and wild ginseng (SanSam, S) pharmacopuncture drugs on muscle differentiation and energy metabolism regulation in C2C12 myotubes. Methods: The C2C12 myoblasts were differentiated into myotubes for 5 days by replacing in medium containing 2% horse serum and then treated with J and S pharmacopuncture extract at different concentrations for 24 hr. The expression of myosin heavy chain and energy metabolism-regulating factors, myosin heavy chain (MHC), nuclear respiratory factor-1 (NRF-1), and proliferator-activated receptor γ coactivator-1 alpha (PGC-1α) were determined in C2C12 myotubes by western blot. Additionally, the phosphorylation of AMPK and the expression of mitochondrial biogenesis, including sirtuin 1 (SIRT1) were determined in the myotubes. Results: As a result, treatment with J and S pharmacopuncture extract at 0.1 and 1 mg/mL increased the MHC expression in C2C12 myotubes compared with non-treated cells, but only S pharmacopuncture was shown a significant and distinct increase in the expression. Expression of TFAM and NRF-1 was also shown significant increases in S and J pharmacopuncture in C2C12 myotubes compared to non-treated cells. The phosphorylation of AMPK and the expression of PGC-1α and SIRT1 showed increased expression in S and J pharmacopuncture compared to non-treated cells. The effect of low-dose of J pharmacopuncture on the phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and PGC-1α expression was greater than that of S pharmacopuncture. Conclusions: In conclusion, both J and S pharmacopuncture promote muscle differentiation in C2C12 myoblasts into myotubes and energy metabolism through the AMPK/SIRT1 signaling pathway. This indicates that the pharmacopuncture with tonic herbal medicines can help to improve skeletal muscle function.

Ethanol Extract of Schisandra chinensis (Turcz.) Baill. Reduces AICAR-induced Muscle Atrophy in C2C12 Myotubes (마우스 C2C12 근관세포에서 AICAR로 유도된 근위축에 미치는 오미자 추출물의 영향)

  • Kang, Young-Soon;Park, Cheol;Han, Min-Ho;Hong, Su-Hyun;Hwang, Hye-Jin;Kim, Byung Woo;Kim, Cheol Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • Muscle atrophy, known as a sarcopenia, is defined as a loss of muscle mass resulting from a reduction in the muscle fiber area or density due to a decrease in muscle protein synthesis and an increase in protein breakdown. Schisandrae fructus (SF) extract of the fruits of Schisandra chinensis (Turcz) Baillon has been used as a tonic in traditional medicine for thousands of years. Although a great deal of work has been carried out on the therapeutic potential of SF, its pharmacological mechanisms of action in muscle diseases actions remain unclear. In the present study, we investigated the inhibitory effects of SF ethanol extracts on the production of muscle atrophy factors in C2C12 myotubes stimulated with 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), an AMP-activated kinase (AMPK) activator, and sought to determine the underlying mechanisms of action. AICAR upregulated atrophy-related ubiquitin ligase muscle RING finger-1 (MuRF-1) and stimulated the levels of the forkhead box O3a (FoxO3a) transcription factor in the C2C12 myotubes. SF supplementation effectively and concentration- dependently counteracted AICAR-induced muscle cell atrophy and reversed the increased expression of MuRF-1 and FoxO3a. Our study demonstrates that SF can reverse the muscle cell atrophy caused by AICAR through regulation of the AMPK and FoxO3a signaling pathways, followed by inhibition of MuRF-1.

Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes (C2C12 근관세포에서 상엽에 의한 AMPK의 불활성화와 AICAR로 유도된 근위축 억제의 연관성에 관한 연구)

  • Lee, Yu Sung;Kim, Hong Jae;Jeong, Jin-Woo;Han, Min-Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.435-443
    • /
    • 2018
  • AMP-activated protein kinase (AMPK) functions as a metabolic master through regulating and restoring cellular energy balance. In skeletal muscle, AMPK increases myofibril protein degradation through the expression of muscle-specific ubiquitin ligases. Mori Folium, the leaf of Morus alba, is a traditional medicinal herb with various pharmacological functions; however, the effects associated with muscle atrophy have not been fully identified. In this study, we confirmed the effects of AMPK activation by examining the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, on the induction of atrophy and expression of atrophy-related genes in C2C12 myotubes. We also investigated the effects of the ethanol extract of Mori Folium (EEMF) on the recovery of AICAR-induced muscle atrophy in C2C12 myotubes. It was found that exposure to AICAR resulted in the stimulation of Forkhead box O3a (FOXO3a); an up-regulation of muscle-specific ubiquitin ligases such as Muscle Atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and a down-regulation of muscle-specific transcription factors, such as MyoD and myogenin; with the activation of AMPK. In addition, AICAR without cytotoxicity indicated a decrease in diameter of C2C12 myotubes. However, treatment with EEMF significantly suppressed AICAR-induced muscle atrophy of C2C12 myotubes in a dose-dependent manner as confirmed by a decrease in myotube diameter, which is associated with a reversed stimulation of FOXO3a by the inhibition of AMPK activation. These results indicate that the activation of AMPK by AICAR induces muscle atrophy, and EEMF has preeminent effects on the inhibition of AICAR-induced muscle atrophy through the AMPK signaling pathway.

Effects of Pomace of Schizandra chinensis, Schizandrin, and Gomisin A on LPS-induced Inflammatory Responses in RAW264.7 Cells (오미자 박, schizandrin 및 gomisin A에 의한 RAW264.7 세포주에서 lipopolysaccharide로 유도된 염증 반응의 억제)

  • Seo, Yu-Mi;Kim, Hyun-Ji;Lee, Eun-Joo;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • Schizandra chinensis has been used as a traditional Chinese medicine and is known to have various bioactive components, including schizandrin and gomisin A. In the current study, we investigated the anti-inflammatory activities and their working mechanisms of ethanol extracts of pomace of Schizandra chinensis (PSC), schizandrin (SZ), and gomisin A (GA). First, we analyzed the effects of PSC on nitric oxide (NO) production and cell viabilities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results indicated that PSC dramatically reduced NO production in LPS-activated RAW264.7 cells in a dose-dependent manner without affecting cell viabilities. PSC also decreased the expression of pro-inflammatory genes iNOS and COX-2, whereas the expression of TNF-${\alpha}$ was not affected by PSC. In addition, PSC inhibited phosphorylation of p38, ERK1/2, and JNK but did not change the expression of their total protein. The results indicate that PSC can regulate LPS-induced inflammatory responses by suppressing MAPK (mitogen-activated protein kinase) signaling. We also analyzed the effects of SZ and GA on NO production and cell viabilities in RAW264.7 cells. The results showed that SZ and GA also decreased NO production in a dose-dependent manner in LPS-activated RAW 264.7 cells without affecting cell viabilities. SZ reduced the expression of iNOS, whereas GA downregulated iNOS and COX-2. Overall, these findings clarify the molecular mechanisms of the anti-inflammatory effects mediated by PSC, SZ, and GA.

Effects of Black Soybean and Fermented Black Soybean Extracts on Proliferation of Human Follicle Dermal Papilla Cells (검은콩과 발효검은콩 추출물이 인간 모유두 세포 성장에 미치는 효과)

  • Choi, Ji-Hye;Lee, Myoungsook;Kim, Hyun Jung;Kwon, Jung Il;Lee, Yunkyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.671-680
    • /
    • 2017
  • This study was conducted to examine the effects and potential mechanisms of action of black soybean extracts and fermented black soybean extracts by Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animals subsp. lactis BB-12 (BB-12) on proliferation of human follicle dermal papilla cells (HFDPC). We examined changes in pH, total polyphenol, sugar, and reducing sugar contents according to fermentation period of black soybean extracts. Assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was performed to determine cell toxicity levels of the four black soybean extracts [black soybean water extract (BWE), black soybean ethanol extract (BEE), fermented BWE (F-BEW), and fermented BEE (F-BEE)]. Changes in mRNA expression levels of hair growth promoting factors and hair growth inhibiting factors by the four black soybean extracts were measured by real-time PCR. In addition, phosphorylation levels of mitogen-activated protein kinase family proteins were measured by western blot analysis. As a result, fermentation of black soybeans significantly reduced pH, total polyphenols, and sugar/reducing sugar contents. All four black soybean extracts showed no cellular toxicity in HFDPC. In fact, BEE significantly enhanced cell viability of HFDPC at $100{\mu}g/mL$ compared to control. BWE, BEE, and BWE-F significantly increased mRNA expression of vascular endothelial growth factor, and all four extracts increased mRNA expression of fibroblast growth factor. However, mRNA expression levels of apoptosis-related genes were not affected by black soybean extracts in HFDPC. Furthermore, BWE, BEE, and BWE-F significantly increased phosphorylation levels of extracellular signal-regulated kinase compared to control. Taken together, we demonstrated that black soybean extracts enhanced proliferation of human follicle dermal papilla cells partially via activation of hair growth promoting factors, although no particular significant effects on proliferation were observed by fermentation of black soybeans.

The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1

  • Lee, Sang Hoon;Shin, Ju Hye;Shin, Mi Hwa;Kim, Young Sam;Chung, Kyung Soo;Song, Joo Han;Kim, Song Yee;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Transforming growth factor ${\beta}$ (TGF-${\beta}$), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-${\beta}1$. Methods: A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-${\beta}1$ and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-${\beta}1$ and Smad3 were evaluated at 1 and 3 weeks. Results: When A549 cells were pre-stimulated with TGF-${\beta}1$ prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-${\beta}1$ stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-${\beta}1$ failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-${\beta}1$-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-${\beta}1$ and Smad3 at 1 and 3 weeks. Conclusion: RA had inhibitory effects on the phosphorylation of Smad induced by TGF-${\beta}1$ in vitro, and RA also decreased the expression of TGF-${\beta}1$ at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-${\beta}1$/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-${\beta}1$-induced lung injury and fibrosis.