• Title/Summary/Keyword: Protein Degradability

Search Result 143, Processing Time 0.022 seconds

In-sacco Degradability of Dietary Combinations Formulated with Naturally Fermented Wheat Straw as Sole Roughage

  • Pannu, M.S.;Kaushal, J.R.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1307-1311
    • /
    • 2002
  • Twelve dietary combinations were prepared using 70 parts of fermented wheat straw (FWS) as the sole roughage supplemented with 30 parts of either the low protein concentrate mixture (Conc.-I), high protein concentrate mixture (conc.-II), maize grains (M), solvent extracted mustard cake (DMC), deoiled rice bran (DRB), uromol bran mixture (UBM), deep stacked poultry litter (DSPL), dried poultry droppings (DPD), M-DMC mixture (50:50), M-UBM mixture (50:50), M-DPD mixture (50:50) or M-UBM-DPD mixture (50:25:25) and evaluated by in-sacco technique. The above dietary combinations were also evaluated by changing the roughage to concentrate ratio to 60:40. The digestion kinetics for DM and CP revealed that FWS:DPD had the highest, whereas, the FWS:M-DMC had the lowest rapidly soluble fraction. The potentially degradable fraction was found to be maximum in FWS:M and minimum in FWS:DPD dietary combinations. The higher degradation rate of FWS:DRB and FWS:UBM combinations was responsible for their significantly (p<0.05) higher effective degradability as compared to other combinations. The highest undegradable fraction noted in FWS:M-UBM-DPD followed by FWS:DMC was responsible for high rumen fill values. The FWS:DRB, FWS:UBM and FWS:DPD combinations had higher potential for DM intake. The dietary combination with higher concentrate level (60:40) was responsible for higher potentially degradable fraction, which was degraded at a faster rate resulting in significantly higher effective degradability as compared to the corresponding dietary combination with low concentrate level (70:30). The low undegradable fraction in the high concentrate diet was responsible for low rumen fill values, which predicted of high potential for DM intake. Out of 24 dietary combinations, FWS with either of UBM, DRB, DMC, Maize, M-DMC or DPD in 70:30 ratio supplemented with minerals and vitamin A in comparison to conventional feeding practice (roughage and concentrate mixture) could be exploited as complete feed for different categories of ruminants.

Effects of Gamma Irradiation on Nutrient Composition, Anti-nutritional Factors, In vitro Digestibility and Ruminal Degradation of Whole Cotton Seed

  • Hahm, Sahng-Wook;Son, Heyin;Kim, Wook;Oh, Young-Kyoon;Son, Yong-Suk
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Whole cotton seed (WCS) has become one of the major feed ingredients in TMR for dairy cattle in Korea, and WCS for feed use is mostly imported from abroad. Since this genetically modified oil seed is usually fed to the animal in raw state, its germination ability, if last long, often causes concerns about ecological disturbances. In the process of looking for effective conditions to remove germination ability of WCS this study had the objectives to evaluate the nutritional effects of gamma irradiation at doses of 8, 10 and 12 kGy on changes in nutrient contents, anti-nutritional factors, in vitro digestibility and ruminal degradability. No significant differences were found in proximate analysis of nutrients between raw WCS and gamma irradiated one. Glycine and threonine contents significantly increased when the WCS was exposed to gamma ray as compared to untreated WCS (p<0.05). As for fatty acid composition, no significant differences were observed with the irradiation treatment. Free gossypol in WCS was decreased (p<0.05) by gamma irradiation treatment. Of the 3 different levels of gamma irradiation, a dose of 12 kGy was found to be the most effective in reducing free gossypol concentration. Results obtained from in situ experiment indicated that gamma irradiation at a dose of 10 kGy significantly (p<0.05) lowered rumen degradability of both dry matter and crude protein as compared with raw WCS. However, there were no significant differences in rapidly degradable and potentially degradable fractions of crude protein due to 10 kGy gamma irradiation. Overall, this study show that gamma irradiation at a dose of 10 kGy is the optimum condition for removing germination ability of WCS, and could improve nutritive value for the ruminant with respect to the decrease in both ruminal protein degradability and gossypol content of WCS.

Nutritive Evaluation of Some Fodder Tree Species during the Dry Season in Central Sudan

  • Fadel Elseed, A.M.A.;Amin, A.E.;Khadiga,;Abdel Ati, A.;Sekine, J.;Hishinuma, M.;Hamana, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.844-850
    • /
    • 2002
  • The potential nutritive value was studied on leaves of seven fodder trees in Central Sudan during dry season at two distinct periods, the early dry and the late. The chemical composition, mineral concentration, in vitro organic matter digestibility (IVOMD), in situ OM or nitrogen degradability and estimated metabolizable energy showed a wide variation among fodder tree species and between different periods of the dry season. Crude protein (CP) ranged from 285 to 197 g/kg DM at early dry season, with a significant reduction in late dry season. Ziziphus spina-christi and Balanites aegyptiaca showed the least reduction in CP content. The NDF, ADF and lignin were about 200, 160 and 19 g/kg DM, respectively at the early period, and significantly increased at the late period of the dry season, except for lignin of Z. spina-christi. For mineral concentration, all fodder tree leaves were rich in calcium but poor in phosphorus. In situ OM degradability significantly decreased at the late period of dry season, but values remained as high as over 600 g/kg OM. At both periods, Z. spina-christi showed the highest value, while the lowest was recorded in Acacia seyal. The IVOMD showed a similar trend to those of in situ OM degradability, except for A. seyal. The nitrogen degradability was highest in B. aegyptiaca and lowest in Z. spina-christi at both periods. A significant and positive correlation had existed between CP and IVOMD or in situ OM degradability (r=0.68, p<0.05; r=0.77, p<0.05, respectively). Also, a significant but negative correlation was found between condensed tannins and nitrogen degradability (r=-0.87, p<0.01). Results demonstrated that Z. spina-christi potentially has a good nutritive value as dry season feed or supplement, while A. seyal tends to be less promising. A. nubica and B. aegyptiaca may be a useful source for degradable protein, even though it may have a limited supply of energy to animals. A. tortilis, A. mellifera and A. ehrenbergiana may have potential value for a supplementation of energy or protein, if they were harvested in the early dry season or in wet season as preserved feed. It is highly recommended to supplement with an appropriate amount of phosphorus when these fodder trees were used.

The Effect of Addition of Apple Pomace on Quality and In Situ Degradability of Orchardgrass Silage (사과박 첨가가 오차드그라스 사일리지의 품질과 In Situ 소실율에 미치는 영향)

  • 조익환;황보순;안종호;김현진;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.137-144
    • /
    • 2001
  • The quality including in situ degradability in the rumen of Holstein of the orchardgrass silage added with apple pomace was investigated in this study. The amount of apple pomace added in different treatments were 0, 20, 40 and 60% respectively. With higher amount of addition of apple pomace to orchardgrass, ADF, NDF and crude ash contents decreased significantly (p<0.05). Crude protein contents in the silages (11.8- 12.9%) were similar to that of 100% orchardgrass silage. Moisture contents increased according to the higher proportion of apple pomace in the silages. On the contrary to moisture content, pH was lower in 40-60% addition of apple pomace (3.7-3.9) than that of 100% orchardgrass silage (4.7). However the contents of lactic acid (1.7-2.5%), acetic acid (1.3- 1.7%) and total organic acid (2.9-4.2%) significantly increased according to higher levels of addition of apple pomace compared to the respective values of 100% orchardgrass silage (1.1%, 0.6% 1.7%). In siru disappearance rates of dry matter and NDF in the rumen were significantly higher at the stages of incubation after 24h in 40-60% addition of apple pomace than in 100% orchardgrass silage. No statistical differences were observed with quickly degradable fraction (a) and slowly degradable fraction (b) in the disappearance rates of dry matter and NDF. However, fractional rate of disappearance (c) and effective degradability (ED, k=0.08) for dry matter and NDF were significantly higher in 20-60% addition of apple pomace as 0.0076-0.0079 and 0.0099-0.0130. and 39.3-41.7% and 18.4- 20.6% respectively than the respective values of 0.0054 and 0.0064, and 36.8 and 16.5% of 100% orchardgrass silage. (Key words : Orchardgrass silage. Apple pomace. Lactic acid, In Situ Degradability. Effective degradability)

  • PDF

The Effect of Yerba Mate (Ilex Paraguariensis) Supplementation on Nutrient Degradability in Dairy Cows: An In sacco and In vitro Study

  • Hartemink, Ellen;Giorgio, Daniela;Kaur, Ravneet;Di Trana, Adriana;Celi, Pietro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1606-1613
    • /
    • 2015
  • This study was carried out to investigate the effects of Yerba Mate (YM) supplementation on nutrients' degradation, in vitro dry matter disappearance, gas production and rumen ammonia concentration. Three rumen-fistulated Holstein Friesian cows were used for the in situ incubations and provided rumen liquor for in vitro incubations. The inclusion of YM in a control diet (pasture+pellets) affected some in sacco degradation parameters. YM supplementation decreased the effective degradability and degradation rate of pasture crude protein (CP), and it seems to slow down the degradation of pasture neutral detergent fiber. A significant increase of degradation of pasture acid detergent fiber (ADF) was detected after YM inclusion in the control diet. YM supplementation reduced in vitro gas production of pasture and ammonia concentration of pellets. The addition of YM in ruminant diet could decrease ammonia production and increase protein availability for productive purposes. The moderate presence of tannins in YM could have affected the degradation kinetics of pasture CP and ADF and the ammonia production of pellets.

Predicting In Sacco Rumen Degradation Kinetics of Raw and Dry Roasted Faba Beans (Vicia faba) and Lupin Seeds (Lupinus albus) by Laboratory Techniques

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1377-1387
    • /
    • 2000
  • Two laboratory techniques: (1) an in vitro method with two procedures for measuring protein degradabilities and (2) an in vitro method with three procedures for measuring protein solubility, were investigated to determine which laboratory techniques could most accurately predict the quantity of rumen protein degradation kinetics of legume seeds after dry roasting under various conditions, in terms of (1) rumen protein disappearance ($D_j$, where j=0, 2, 4, 8, 12, 24 and 48 h incubation), (2) rumen protein effective degradability (EDCP), (3) the parameters describing rumen degradation characteristics (the soluble fraction: S, the potentially degradable fraction: D, undegradable fraction: U, lag time: T0 and the degradation rate: Kd) and (4) rumen bypass protein (BCP), which were determined by the method accepted internationally at present, in sacco nylon bag technique using the standardized Dutch method. Feeds evaluated were the raw and dry roasted whole faba (Vicia faba) beans (WFB) and whole lupin (Lupinus albus) seeds (WLS), each was dry roasted under various conditions (at 110, 130 or $150^{\circ}C$ for 15, 30 or 45 min). In vitro protein degradability ($D_1$_Auf and $D_{24}$_Auf) were determined using the modified Aufr re method by enzymatic hydrolysis for 1 h and 24 h using a protease extracted from Streptomyces griseus in a borate-phosphate buffer. In vitro protein solubility ($bf_1$_S, $bf_2$_S, $bf_3$_S) was measured in a borate-phosphate buffer with three different procedures. Results from laboratory techniques (in vitro) were correlated and linearly regressed with in sacco results. Of the three procedures of in vitro protein solubility evaluated, none of them could predict in sacco results with good precision. The highest Pearson correlation coefficient ($R^2$) was less than 0.50. Of two procedures of in vitro protein degradability studied, the $D_1$_Auf values were closely correlated with in sacco parameters: Kd, EDCP and %BCP with high R' values: 0.82, 0.85 and 0.85, respectively, and closely correlated with in sacco $D_j$ at 2, 4, 8 and 12 h rumen incubation with high $R^2$ values: 0.83, 0.91, 0.93 and 0.83, respectively. The $D_{24}$_Auf values could not predict in sacco results. The highest $R^2$ value was less then 0.40. These results indicated that in vitro protein solubility measured in borate-phosphate failed to identify differences in the rate and extent of protein degradation of legume seeds after dry roasting under various conditions and thus should not be used to predict rumen degradation, particularly for heat processed feedstuffs. But in vitro protein degradability using the modified Aufr re method by enzymatic hydrolysis for 1 h or possibly an intermediate time (>1 h and <24 h) is a promising laboratory procedure to detect effectiveness of dry roasting legume seeds on rumen protein degradation characteristics and could be used as a simple laboratory method to predict the rate and extent of protein degradation in the rumen in sacco with high accuracy. The equations to predict EDCP, Kd and BCP of dry roasted legume seeds (WLS and WFB) under various conditions are as follow: For both: EDCP (%)=-1.37+1.06*$D_1$_Auf ($R^2=0.85$, p<0.01). For both: Kd (%/h)=-21.81+0.49*$D_1$_Auf ($R^2=0.82$, p<0.01). For both: %BCP=103.37-1.07*$D_1$_Auf ($R^2=0.85$, p<0.01).

Influence of Grain Processing and Dietary Protein Degradability on Nitrogen Metabolism, Energy Balance and Methane Production in Young Calves

  • Pattanaik, A.K.;Sastry, V.R.B.;Katiyar, R.C.;Lal, Murari
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1443-1450
    • /
    • 2003
  • Crossbred (Bos taurus${\times}$Bos indicus) calves were used from birth till 14 weeks of age to evaluate three sources of protein that differed in ruminal degradability viz. groundnut cake alone (HD) or in combination with cottonseed meal (MD) and meat and bone meal (LD), when fed along with two sources of non-structural carbohydrates viz. raw (R) and thermally processed (P) maize. Twenty four new born calves were arranged in six groups in a $3{\times}2$ factorial design and fed on whole milk up to 56 d of age. All the different calves received calf startes along with green oats (Avena sativa) from 14 d of age onwards free-choice. A metabolism trial of 6d starters duration, conducted after 90 d of experimental feeding, revealed greater (p<0.05) digestibility of DM, OM, total carbohydrates, NDF and ADF in calves fed on the P diets than on the R diets promoting greater (p<0.05) metabolizable energy intake. The digestibility of NDF was higher (p<0.01) on LD diets where as calves on MD diets exhibited significantly lower digestibility of ADF (p<0.01). The retention of nitrogen per unit metabolic body size was significantly (p<0.05) higher on the LD-P diet than on the diet HD-P which, in turn, was higher (p<0.05) than that of HD-R. Nitrogen retention as percentage of intake was significantly greater (p<0.05) on LD-P than on LD-R diets (52.2 vs. 36.4%). Also, P fed calves utilized nitrogen more efficiently than the R fed as shown by retention of significantly greater proportions of intake (47.4 vs. 40.9%) and absorbed (65.8 vs. 59.5%) nitrogen. Calorimetric evaluation of the diets through open-circuit respiration chamber revealed that the dietary treatments had no impact on methane production by calves. The intake of DE and ME was improved (p<0.01) because of maize processing resulting in greater (p<0.01) retention of energy. The protein degradability exerted no influence on the partitioning or retention of energy. A significant interaction between cereal and protein types was evident with respect to retention of both nitrogen (p<0.01) and energy (p<0.05). In conclusion, no discernible trend in the influence of cereal processing was apparent on the dietary protein degradability, but the positive effect of cereal processing on energy retention diminished with the increase in dietary undegradability.

Effects of Protein Supplement Sources on Digestibility of Nutrients, Balance of Nitrogen and Energy in Goats and Their In Situ Degradability in Cattle

  • Khan, M.J.;Nishida, T.;Miyashige, T.;Hodate, K.;Abe, H.;Kawakita, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.673-679
    • /
    • 1998
  • The experiment was conducted to determine in situ rumen degradability of soybean meal (SM), fish meal (FM), sesame cake (SC) and Italian ryegrass hay (IRGH) and the effect of supplementing the above protein meals to IRGH on digestibility and balance of nutrients in three Saanen goats. For measuring the degradability, nylon bags containing each meal were incubated in the rumen of one fistulated dry cow for 3, 6, 12, 24, 36, and 48 hrs. Degradability revealed that SM protein was highly degradable in the rumen (99.1%), while FM protein was less degradable (76.8%) with SC protein being intermediate (91.2%) at 48 hrs of incubation (p < 0.01). Degradation rate of the potentially degradable fraction was estimated to be 12.12, 5.88 and 5.88%/hr for SM, FM and SC, respectively. In the metabolism trial, all goats were offered daily 900 g IRGH and one of the supplements, SM (100 g), FM (75 g) or SC (100 g). Intake of DM, OM, CP and GE was similar among diets. However, digestibility of OM for SC diet was significantly lower than that for diets supplemented with FM and SM (p < 0.10). Nitrogen (N) excreted in faeces (p < 0.05) and in urine (p < 0.10) was, respectively, higher and lower for SC diet than that for the other two diets. The same tendency was observed in energy losses in faeces (p < 0.10) and in urine (p < 0.05). There was no difference in energy loss in methane or in heat production among diets. Consequently, no significant difference was observed in N retention (2.13, 0.42 and -0.11 g/day for FM, SC and SM diet, respectively) or in energy retention (-1.49, -2.14 and -2.70 MJ/day for FM, SM and SC diet, respectively). These results showed that protein supplements affected the digestion of diets based on grass hay with 7.45% CP in DM in goats, although there was no significant influence on N or energy retention.