• Title/Summary/Keyword: Protein Acetylation

Search Result 82, Processing Time 0.03 seconds

Solution Structure and Backbone Dynamics of the Biotinylation Domain of Helicobacter pylori Biotin-carboxyl Carrier Protein

  • Jung, Jin-Won;Lee, Chul-Jin;Jeon, Young-Ho;Cheong, Chae-Joon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.347-351
    • /
    • 2008
  • Acetyl-CoA carboxylase (ACC) is an excellent candidate for antibiotics drug target, which mediates malonyl-CoA synthesis from acetyl-CoA through acetylation process. It is also involved in the committed step of fatty acid synthesis which is essential for living organisms. We have determined the three dimensional structure of C terminal domain of HP0371, biotin-carboxyl carrier protein of H. pyroli, in solution state using heteronuclear multi-dimensional NMR spectroscopy. The structure of HP0371 shows a flatten b-sheet fold which is similar with that of E. coli. However, the sequence and structure of protruding thumb are different with that of E. coli and the thumb shows different basis of structural rigidity based on backbone dynamics data.

Garcinol, an Acetyltransferase Inhibitor, Suppresses Proliferation of Breast Cancer Cell Line MCF-7 Promoted by 17β-Estradiol

  • Ye, Xia;Yuan, Lei;Zhang, Li;Zhao, Jing;Zhang, Chun-Mei;Deng, Hua-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5001-5007
    • /
    • 2014
  • The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol ($E_2$) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-${\kappa}B$/p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl-xl. We found that on treatment with garcinol in MCF-7 cells, $E_2$-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-${\kappa}B$/ac-p65 proteins in $E_2$-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac-H4.The nuclear translocation of NF-${\kappa}B$/p65 in $E_2$-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of $E_2$ on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-${\kappa}B$/p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by $E_2$. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-${\kappa}B$ pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.

Identification of Differentially Expressed Genes by Proto-oncogene Protein DEK using Annealing Control Primers

  • Kim, Dong-Wook;Lee, Jae-Hwi;Seo, Sang-Beom
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.184-189
    • /
    • 2008
  • The proto-oncogene protein DEK has been implicated in various human disease including cancer. We have shown that DEK induces caspase-dependent apoptosis in Drosophila by regulating histone acetylation. Reverse transcription-polymerase chain reaction (RT-PCR) method based on annealing control primers was used to screen and identify differentially expressed genes (DEGs) in DEK overexpressed HeLa cells. Among the genes identified, clusterin and fibrillarin have major role in apoptosis pathway regulation. TFIIIC and RPS24 are implicated in HAT mediated transcriptional initiation and cololectal cancer, respectively. To further analyze DEK's role in apoptosis, multiplex PCR was performed. Caspase-3, -7, and -10 and proapoptotic gene bid were newly identified as possible target genes regulated by DEK expression.

Functional Properties of Acetylated and Succinylated Silkworm Larvae Protein Concentrates (아세틸화와 숙시닐화한 번데기 농축단백질의 기능성)

  • 박정륭;박금순
    • Korean journal of food and cookery science
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 1987
  • Eighty eight percent of succinylation at $\varepsilon$-amino group of lysine was obtained from silkworm larvae protein concentrate and it resulted in increased bulk density and fat absorption, improved flavor and color, increased solubility over fivefold. Both emulsifying activity and emulsion stability of the succinylated protein were improved by 30% and emulsifying capacity was enhanced by 4%. Foaming capacity of the succinylated Protein concentrate was improved by 30% and foaming stability improved fivefold. The viscosity of succinylated silkworm larvae protein concentrate was increased at all concentrations and reached the highest at 4~5% of concentations. Acetylation of silkworm larvae protein concentrate caused negligible change in the functional properties studied. Therefore, high emulsification properties of silkworm larvae protein concentrate would be a good protein source for the emulsified foods.

  • PDF

Role of Peptides in Rumen Microbial Metabolism - Review -

  • Wallace, R.J.;Atasoglu, C.;Newbold, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.139-147
    • /
    • 1999
  • Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine ptoteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in ptoteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on tapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

Vorinostat Induces Cellular Senescence in Fibroblasts Derived from Young and Aged Dogs

  • Kim, Min-Jung;Oh, Hyun-Ju;Setyawan, Erif Maha Nugraha;Choi, Yoo-Bin;Lee, Seok-Hee;Lee, Byeong-Chun
    • Journal of Veterinary Clinics
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • Although HDACIs affect ubiquitously expressed histone deacetylase and increase cellular senescence, there has been little study on the effect of age on treatment with HDACIs. Accordingly, the purpose of this study was to compare cellular senescence status and vorinostat-induced senescence in fibroblasts derived from aged dogs compared to young dogs. Skin tissues were taken from young (1-year-old) and aged (7-year-old) male dogs, and fibroblasts were cultured without (control) or with 10 uM of vorinostat for 24 hr. Beta-galactosidase activity was assessed, and real-time polymerase chain reaction and western blotting were performed to analyze the expression levels of transcripts and proteins related to cellular senescence. Beta-galactosidase activity was higher in aged dogs compared to young dogs in the control group, and was increased by vorinostat treatment. Expression of p21, p53 and p16 transcripts was higher in the aged than in the young group, and all transcripts were affected by vorinostat in both young and aged groups. Western blot results showed lower H3K9 acetylation in the aged dogs compared to the young dogs, and the acetylation was increased by vorinostat treatment in both groups. However, there was no significant difference between the transcript or protein alterations induced by vorinostat.

A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of huntington's disease

  • Endan Li;Jiwoo Choi;Hye-Ri Sim;Jiyeon Kim;Jae Hyun Jun;Jangbeen Kyung;Nina Ha;Semi Kim;Keun Ho Ryu;Seung Soo Chung;Hyun Sook Kim;Sungsu Lee;Wongi Seol;Jihwan Song
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.178-183
    • /
    • 2023
  • Huntington's disease (HD) is a neurodegenerative disorder, of which pathogenesis is caused by a polyglutamine expansion in the amino-terminus of huntingtin gene that resulted in the aggregation of mutant HTT proteins. HD is characterized by progressive motor dysfunction, cognitive impairment and neuropsychiatric disturbances. Histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase, has been shown to induce transport- and release-defect phenotypes in HD models, whilst treatment with HDAC6 inhibitors ameliorates the phenotypic effects of HD by increasing the levels of α-tubulin acetylation, as well as decreasing the accumulation of mutant huntingtin (mHTT) aggregates, suggesting HDAC6 inhibitor as a HD therapeutics. In this study, we employed in vitro neural stem cell (NSC) model and in vivo YAC128 transgenic (TG) mouse model of HD to test the effect of a novel HDAC6 selective inhibitor, CKD-504, developed by Chong Kun Dang (CKD Pharmaceutical Corp., Korea). We found that treatment of CKD-504 increased tubulin acetylation, microtubule stabilization, axonal transport, and the decrease of mutant huntingtin protein in vitro. From in vivo study, we observed CKD-504 improved the pathology of Huntington's disease: alleviated behavioral deficits, increased axonal transport and number of neurons, restored synaptic function in corticostriatal (CS) circuit, reduced mHTT accumulation, inflammation and tau hyperphosphorylation in YAC128 TG mouse model. These novel results highlight CKD-504 as a potential therapeutic strategy in HD.

Effect of Tartary Buckwheat Sprout on Non-Alcoholic Fatty Liver Disease through Anti-Histone Acetyltransferase Activity (쓴메밀 새싹 추출물의 히스톤 아세틸화 효소 활성 저해에 의한 비알코올성 지방간 억제 효능)

  • Hwang, Jin-Taek;Nam, Tae Gyu;Chung, Min-Yu;Park, Jae Ho;Choi, Hyo-Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) is caused by chronic lipid accumulation due to dysregulation of lipid metabolism in the liver, and it is associated with various human diseases such as obesity, dyslipidemia, hypertension, and diabetes. Histone acetylation is a representative epigenetic mechanism regulated by histone acetyltransferases (HATs) and deacetylases. We observed that tartary buckwheat sprout (TBS) suppressed lipid accumulation in HepG2 cells through its anti-HAT activity. We showed that TBS was a novel HAT inhibitor with specificity for the major HAT enzyme p300. Importantly, TBS reduced acetylation of total and histone proteins, H3K9, H3K36, and H4K8, resulting in decreased transcriptional activities of sterol regulatory element-binding protein 1c, ATP citrate lyase, and fatty acid synthase. These results suggest that TBS inhibits the NAFLD transcription-modulating activity of lipogenesis-related genes through modification of histone acetylation.

Regulation of Histone Acetylation and Methylation of the p11 Gene in the Hippocampus of Chronic Unpredictable Stress-induced Depressive Mice (장기간 예측 불가능한 스트레스를 받은 마우스 해마에서 p11 유전자의 히스톤 아세틸화 및 메틸화의 조절)

  • Seo, Mi Kyoung;Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.995-1003
    • /
    • 2021
  • Chromatin remodeling regulates gene expression through epigenetic mechanisms. Aberrations in histone modification have been associated with depression-like behaviors in animal models. Additionally, growing evidence also indicates that epigenetic modification is associated with depression. p11 (S100A10) has been implicated in the pathophysiology of depression both in human and rodent models. In the present study, we investigated alterations in histone acetylation and methylation at the promoter of the p11 gene in the hippocampus of mice subjected to chronic unpredictable stress (CUS). C57BL/6 mice were exposed to CUS daily for 3 weeks. Depression-like behaviors were measured with the forced swimming test (FST). The levels of hippocampal p11 expression were analyzed by quantitative real-time polymerase chain reaction (PCR) and Western blotting. The levels of acetylated and methylated histone H3 at the promoter of p11 were measured by chromatin immunoprecipitation followed by real-time PCR. CUS-exposed mice displayed depression-like behaviors with prolonged immobility in FST. CUS led to significant decreases in the expression of p11 at both protein and mRNA levels. Meanwhile, there was a decrease in histone H3 acetylation (Ac-H3) and H3-K4 trimethylation (H3K4met3) and an increase in H3-K27 trimethylation (H3K27met3) at the p11 promoter. These results indicate that chronic stress causes the epigenetic suppression of p11 expression in the hippocampus.

SERCA2a: a prime target for modulation of cardiac contractility during heart failure

  • Park, Woo Jin;Oh, Jae Gyun
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.237-243
    • /
    • 2013
  • Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired $Ca^{2+}$ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$ ATPase 2a (SERCA2a) mediates $Ca^{2+}$ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR $Ca^{2+}$ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and $PKC{\alpha}$. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure.