• Title/Summary/Keyword: Protective structure

Search Result 326, Processing Time 0.023 seconds

Effects of unconfined blast on strategic structures and its protective measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Hussain, Md. Ahsaan
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.167-180
    • /
    • 2022
  • A strategic structure when exposed to direct hit of conventional bomb/projectile are severely damaged because of large amounts of energy released by the impact and penetration of bomb. When massive concrete slabs suffer a direct hit, the energy released during impact and penetration process are able to easily break up large mass of concrete. When over stressed under such impact of bombs, the concrete structure fails showing brittle behavioural nature. This paper is intended to study and suggest the protective measures for structures used for strategic application by adopting a means to dissipate the large quantum of energy released. To quantitatively evaluate the force, displacement and energy in such scenario, a fine numerical model of the proposed layered structure of different combinations was built in ANSYS programme in which tri-nitrotoluene (TNT) explosive was detonated at penetration depth calculated for GP1000 Lbs bomb. The distinct blast mitigation effect of the proposed structure was demonstrated by adopting various layers/barriers created as protective measures for the strategic structure. The calculated result shows that the blast effect on the structure is potentially reduced due to provision of buster slab with sand cushioning provided as protective measure to the main structure. This concept of layered protective measures may be adopted for safeguarding strategic structures such as Domes, Tunnels and Underground Structures.

Design of Subsea Manifold Protective Structure against Dropped Object Impacts (낙하체 충돌을 고려한 심해저 매니폴드 보호 구조물 설계)

  • Woo, Sun-Hong;Lee, Kangsu;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • Subsea structures are always vulnerable to accidental risks induced by fishing gear, dropped objects, etc. This paper presents the design of a subsea manifold protective structure that protects against dropped object impacts. Probable dropped object scenarios were established considering the shapes and masses of the dropped objects. A design layout for the manifold protective structure was proposed, with detailed scantlings and material specifications. A method applicable to the pipelines specified in DNV-RP-F107(DNV, 2010) was applied to calculate the annual probabilities of dropped objects hitting the subsea manifold. Nonlinear finite element analyses provided the structural consequences due to the dropped object impacts such as the maximum deflections of the protective structure and the local fracture occurrences. A user-subroutine to implement the three-dimensional fracture strain surface was used to determine whether local fractures occur. The proposed protective structure was shown to withstand the dropped object impact loads in terms of the maximum deflections, even though local fractures could induce accelerated corrosion.

The Study on Assessment of Protective Capacity of the Reinforced Concrete Box-type Artillery Positions (철근콘크리트조 박스형 포상의 방호성능 평가)

  • Baek, Jonghyuk;Kim, Suk Bong;Son, Kiyoung;Park, Young Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.275-281
    • /
    • 2014
  • Although self-propelled artilleries are mobile equipment, they need their own covered-positions for survival against preemptive strikes. The most important military requirement is enough protective capacity against blast pressure caused by explosion. This paper aims to assess the protective capacity of the newly-placed concrete box-type artillery positions using accurate structural geometric models as well as soil-structure interaction analysis. The commercial program is used to model the structural geometry of the positions. In order to describe the correct wave propagation in the backfill along with soil-structure interaction, used parameters in shock equation of state are selected based on the related studies as well as theories and then their final results are verified with the ones calculated with empirical equations in the US Unified Facility Criteria. In sum, it could be concluded that the protective capacity of the newly-built positions satisfies the protective structural requirement.

Development and Verification of Simplified Collision Model for Pile Protective Structures (파일형 선박충돌방호공에 대한 간이충돌모델의 개발과 검증)

  • Lee, Gye Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • In this study, a simplified collision model of pile protective structures against a navigation vessel was proposed and verified. The model of pile protective structure were composed by two plastic hinges at below of cap slab and the inside of ground. A nonlinear equation of motions was developed in consideration of the kinematic energy, potential energy and deformation energy in collision event. The developed simplified model were verified by the precise finite element collision analysis of the vessel and the protective structure.

Performance Evaluation of Molten Metal Splash Protective Fabrics (용융금속 방호보호복소재의 성능수준 평가)

  • Park, Pyoung-Kyu;Jin, Lu;Yoon, Kee-Jong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.55-61
    • /
    • 2018
  • In this study, the molten metal protective performance of various molten metal protective clothing materials such as herringbone twill laminated aluminium foils, oxydized-polyacrylonitrile laminated with aluminium deposited polyethylene terephthalate films, twill fabric laminated with aluminium deposited polyethylene terephthalate films and nonwoven laminated with aluminum deposited polyethylene terephthalate films, were evaluated according to modified EN ISO 9185. The results showed that the molten metal protective performance of tested samples improved with the increase in fabric structure density, weight and thickness. In addition the effect of the thickness of aluminum foil on the molten metal protective performance is not significant. It was found the fabric is more important in the molten metal splash protective clothing.

The Effect of Spacer on Microclimate and Comfort Sensation in Protective Clothing for Firefighters

  • Chung, Gi-Soo;Lee, Dae-Hoon
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.564-566
    • /
    • 2002
  • Protective clothing for firefighters typically consists of a flame resistant outer shell and inner layers. The inner layers are generally composed of a moisture barrier and a thermal barrier. On performing the task in fire place the heat and perspiration generated from the body become trapped inside the protective clothing. Those heat and moisture result into heat-stress and physical fatigue of fire fighter, which hinder the work. Therefore, the system of clothing designs and material layers must be chosen carefully to balance protection and comfort. 3 kinds of protective clothing of 3 layer structure were used in the experiment of physiological comfort. From the comparison of wear trials with the 3 kinds of layers in firefighters clothing, it indicates that the moisture dissipation of A+B2+C was highest, following A+BI+C andA+B3+C. And the heat dissipation of A+BI+C and A+B2+C were better than A+B3+C. In the protective clothing with A+B3+C, heat and perspiration generated through exercise remained in clothing system long and caused discomfort.

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Base Pattern Development of Protective Clothing - Focusing on Protective Clothing for Riot Policewomen - (보호복 상의 베이스 패턴 개발 - 여경보호복을 중심으로 -)

  • Kim, Hyo-Sook;Kim, Ji-Hyeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.207-224
    • /
    • 2015
  • Protective clothing for riot policewomen is worn by policewomen to protect their body at suppressing a riot. Plastic guards of Nylon 66 material are attached to the base of E.V.A. Foam material. Protective clothing for riot policewomen consists of a jacket, guards for arms and legs, upper arm braces, and thigh pads. This study was aimed to develop the base pattern of the jacket to protect the torso and to improve the body suitability and the adaptability to movements of protective clothing for riot policewomen. Since current protective clothing worn by riot policewomen is manufactured with the same design of protective clothing for riot policemen, the body suitability and the adaptability to movements are not very satisfactory for policewomen who has different body structure than from riot policemen. Therefore, the purpose of this study is to reflect the body size and characteristics of riot policewomen and develop the base pattern of protective clothing with better body suitability and adaptability to movements. In this respect, amount and place of dots on the jacket were differently designed, made and evaluated by fitting test. The base with the best evaluation was selected as the final experiment clothing to demonstrate its superiority compared with the existing protective clothing.

  • PDF

A Protection Capacity Evaluation of Vessel Protective Structures by Quasi-Static Collision Analysis (준정적 충돌해석을 통한 선박충돌방공호의 방호능력평가)

  • Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, the vessel collision protective structure and the vessel were modeled numerically and the quasi-static collision analysis was performed to evaluate the maximum protection capacity. In the modeling process of protective structure, the nonlinear behaviors of structure and the supporting conditions of ground including pull-out action were considered. In that of collision vessel, the bow of vessel was modeled precisely, because of the nonlinear behaviors were concentrated on it. For the efficient analysis, the mass scaling scheme was applied, also. To evaluate the differences and efficiency, the dynamic analyses were performed for the same model, additionally. Based on the obtained energy dissipation curves of the structure and the vessel, the moment that the collision force affected to the bridge substructures was determined and the maximum allowable collision velocity was evaluated. Because of the energy dissipation bound can be recognized clearly, this scheme can be used efficient in engineering work.

Feasibility Study of a Corrugated Steel Protective Structure for Ammunition Test Facility (탄약시험장의 강재 방호구조물 적용성 분석 연구)

  • Han, Jae Duk;Kim, Donghee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.671-679
    • /
    • 2022
  • Harmful factors such as shock waves and fragments are generated at domestic ammunition testing sites and military shell shooting training sites due to frequent shooting and explosion tests. As a result, complaints from local residents are rapidly increasing, and there is a high risk of damage to facilities and human life. The recently constructed ammunition test site built a test facility for firing artillery and rocket propulsion in a narrow area with a radius of 300 m due to site restrictions, but damage to the facility is accumulating because there is no adequate protective structure. Therefore, in this study, quantitative data on harmful factors such as noise, vibration, shock wave, and thermal effect generated between artillery firing and rocket propulsion tests were measured, and explosion pressure characteristics were analyzed to design a protective structure, and use Autodyn to protect performance. to perform verification.