• Title/Summary/Keyword: Protective effect of Panax ginseng

Search Result 85, Processing Time 0.025 seconds

Protective Effect of Panax ginseng extract on Renal Functions Altered by Mercuric Chloride in Albino Rats

  • Saxena, Prabhu-N.;Mahour, K.;Kumar, Ashok
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.100-105
    • /
    • 2006
  • Liver and kidney are specific organs which play an active role in biotransformation and detoxification mechanisms. Ant adverse effect of chemicals or heavy metal can cause the delay or fade in these mechanisms. Present study was designed to find out the protective effect of Panax ginseng extract on renal functions altered by mercuric chloride (heavy metal) in albino rat. Fifty albino rats were divided into 10 groups. Five groups for acute study and five groups for sud-acute study viz. control group (Tween 20 and distilled water), mercuric chloride treated group (0.926 mg/kg body wt. for acute and 0.044 mg/kg body wt. for sub-acute group after calculated $LD_{50}$ (9.26 mg/kg body wt.) by probit analysis (Finney, 1971), Panax ginseng extract treated group (10 mg/kg body wt. for acute and sub-acute sets), mercuric chloride treated followed by Panax ginseng extract and Panax ginseng extract followed by mercuric chloride group. All doses were given orally by gavage tube. The result revealed that the serum urea and creatinine significantly increased in mercuric chloride treated group, while significantly decreased (p<0.01) in Panax ginseng extract group after acute and sub-acute treatment. The biochemical estimation is also confirmed by nephropathological aspect. However, the Panax ginseng extract treated followed by mercuric chloride group is more prominent than the mercuric chloride treated followed by Panax ginseng extract group. It can be concluded that Panax ginseng extract had a protective nature on renal functions against mercuric chloride toxicity in albino rats.

The Possible Protective Role of Korean Ginseng on Ochratoxicosis: with Special References on Chromosomal Aberrations in Rats.

  • Nada, Spomaia A.;Arbid, Mahmoud S.;Ramadan, A.I.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.253-262
    • /
    • 1998
  • Ochratoxin A (OA) is a potent mycotoxin causing considerable health hazard and economic loss- e,i. OA is of concern as it is hepato-nephrotoxic, mutagenic, and carcinogenic to a great variety of animals. LDso of crude OA was 8.5 mgf kg.b.w., i.p. The clinical symptoms, mortalities and necropsy were recorded in rats injected with OA (LD5o, i.p.) during 10 days of daily treatment. Ginseng treatments (20 mg 1 kg. b.w., i.p.) : before, mixed with, or after OA dose, completely prevented the mortality in rats. OA-treated animals showed microcytic normochromic anaemia, lucocytosis, hypoproteinaemia and elevation of serum ALT, AST, AP, urea, and creatinine values. These findings were declined near the normal levels when ginseng injected with OA. OA (115 LDso) induced chromosomal aberrations (65.66%) compared to the control. When ginseng given 10 min before OA injection, chromosomal aberrations were reduced to be 31.66% compared to OA-treated animals. In conclusion: ginseng has a protective effect against ochratoxicosis, it has anti-genotoxic activity and it can repair the chromosomal damage induced by ochratoxin A. Key words Ochratoxicosis, Chromosomal aberrations, Mycotoxins, Ochratoxin A, Korean gin sting, Protective effect of Panax ginseng, Rat

  • PDF

Stabilization of .betha.-D-galactosidase from heat and chemical inactivation with the extract of panax ginseng C. A. Meyer

  • Kim, Doo-Ha;Hahn, Younghe;Hong, Soon-Keun
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 1982
  • Staibilization effect of Panax ginseng C. A. Meyer on .betha.-D-Galactosidase inactivation was proved by kinetic studies of thermal inactivation of the enzyme. The water extract Panax ginseng C. A. Meyer showed stabilization activity at minimal concentration of 10ppm. The methanolic extract was purified to obtain ginseng saponins, and two groups of the ginsenosides, i. e. protopanaxadiol and protopanaxatriol were isolated. They also showed a protective effect against the thermal and chemical inactivation of the enzyme; p-chloromercuribenzoic acid and hydroxylamine known as protein modifier greatly inactivated the enzyme but inactivation was significantly balocked by the ginseng component MG$^{2+}$, known as a cofactor, stabilized the enzyme and the poor stabilization effect by it was potentiated by ginseng components.s.

  • PDF

Studies on the Antioxidant Substances in Panax Ginseng Roots;II. The Antioxidant Activity of Petroleum Ether Extact of Panax Ginseng Roots (인삼중의 항산화물질에 관한 연구;제2보 : 인삼의 석유에테르 추출물의 항산화작용)

  • Paik, Tai-Hong;Hong, Jeong-Tai
    • Journal of the Korean Applied Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.39-42
    • /
    • 1986
  • The antioxidant activity of petroleum ether extract of Panax ginseng roots in the oxidation of mixed methyl esters of unsaturated fatty acids(MEUFA) was investigated in vitro. The petroleum ether extract of panax ginseng roots showed the antioxidant activity and inhibited the weight gain in the autoxidation of MEUFA. And the induction periods in the autoxidation of MEUFA were related to te addition concentrations of petroleum ether extact. The antioxidant effect of petroleum ether extract on the autoxidation of MEUFA was caused by the protective formation of lipid peroxides and carbonyl compounds. From the results obtained, it was confirmed that petroleum ether extract of panax ginseng roots contained antioxidant substances.

Protective effect of Ginseng Petroleum Ether Extract Against Lipid Peroxidation and Oxidative DNA Damage (인삼지용성성분의 지질과산화 및 산화적 DNA손상에 대한 억제효과)

  • 허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.315-320
    • /
    • 1997
  • Panax ginseng C.A. Meyer has been extensively used in the traditional oriental medicine as a restorative, tonic and prophylatic agent. This study was devised to develop a chemopreventive agent from panax ginseng to be able to suppress the genotoxicity and oxidative damage by ractive oxygen species, which are involved with cancer or aging. Ginseng petroleum ether extract (GPE) and one of its fraction, P2, showed an antioxidative effect on the lipid peroxidiphenyl-2-picryl hydrazil (DppH) radical generation. They also showed the suppressive effect of H2O2 or KO2 induced DNA damage by single cell gel electrophoresis (SCGE). Results from our study indicate that GPE and P2 are capable of protecting lipid peroxidation, and oxidative DNA damage. Therefore, GPE and P2 may be useful chempreventive agents which are involved with cancer and aging.

  • PDF

Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract

  • Lee, Jeong-Oog;Kim, Eunji;Kim, Ji Hye;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Kim, Juewon;Kim, Su Hwan;Park, Chanwoong;Seo, Dae Bang;Son, Young-Jin;Han, Sang Yun;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • Background: The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)-induced keratinocytes. Methods: To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide ($H_2O_2$) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results: Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine mono-phosphate response element-binding protein. Pg-C-EE also suppressed ROS generation induced by $H_2O_2$ and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion: These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element-binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects.

Protective Effects of Panax ginsengon the Neurotoxicity Induced by Abuse Drugs

  • Oh, Ki-Wan
    • Proceedings of the Ginseng society Conference
    • /
    • 2005.11a
    • /
    • pp.41-63
    • /
    • 2005
  • Ginseng has been useful for the treatment of diverse disease in oriental countries for thousands of years. In addition, a folk medicine prescribed by seven herbal drugs including Panax ginseng has been antinarcotics in the treatment of morphine-dependent patients. Many articles have been reported on these works. Therefore, we review the protective effects of Panax ginseng on the neurotoxicity induced by abuse drugs. Ginseng total saponins (GTS) extracted and isolated by Panax ginseng antagonized morphine-induced analgesia, and inhibited the development of analgesic tolerance to and physical dependence on morphine. CTS inhibited morphine-6 dehydrogenase, which catalyzes production of mophinone from morphine, and increased hepatic glutathione level responsible to toxicity. Therefore, wehypothesized that these dual actions of ginseng can be associated with the detoxication of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contraction in guinea pig ileum (${\mu}$-receptors) and mouse vas deferens(${\delta}$-receptors) were not mediated through opioid receptors, suggesting non-opioid mechanisms. On the hand, antagonism of U-50,488H (${\kappa}$-agonist)-induced antinociception is mediated by serotonergic mechanisms. GTS also inhibited hyperactivity, reverse tolerance (sensitization) and conditioned place preference-induced by psychostimulants such as methamphetamine, cocaine and morphine. On the other hand, GTS reduced the dopamine levels induced by methamphetamine. Moreover, GTS blocked the development of dopamine receptor activation, showing antidopaminergic effect. We suggest that GTS prevent the methamphetamine-induced striatal dopaminergic neurotoxicity. In addition, Ginsenoside also attenuates morphine-induced CAMP signaling pathway. These results suggested that GTS might be useful for the therapy of the adverse actions of drugs with abuse liability.

  • PDF

Protective Effect of Ginseng Polysaccharide Fraction on CCl4-induced Hepatotoxicity in vitvo ana in vivo (인삼 다당분획의 in vitro, in vivo에서 사염화탄소 유발 간독성에 대한 보호효과)

  • Kim, Young-Sook
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.108-113
    • /
    • 1995
  • Effect of ginseng polysaccharide fraction was examined for $CCl_4$-induced hepatotoxicity in vitro and in vivo. In $CCl_4$-injured primary cultured rat hepatocytes, treatment of the polysaccharide fraction (0.1, 0.3, 1.0 mg/ml) significantly Inhibited the release of LDH and GOT into the culture medium in a dose-dependent manner. Oral administration of the polysaccharide fraction (100, 200 mg/kg) inhibited the decrease of body weight and the increase of the ratio of liver to body weight in $CCl_4$-intoxicated rats. Elevation of GOT, GPT and ALP activity in the serum by $CCl_4$-induced hepatotoxicity was suppressed by administration of ginseng polysaccharide fraction. MDA levels increased in the serum as well as in the liver tissue by treatment with $CCl_4$ showed a tendency to be 연w in the rats given to the polysaccharide fraction. These results suggest that the polysaccharide fraction may be active substance responsible for antihepatotoxic effect of Panax ginseng.

  • PDF

Protective Effect of Panax ginseng Against Tetracycline Toxicity in Rats

  • Nada, Somaia A.;Arbid, Mahmoud S.
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.94-98
    • /
    • 2000
  • Tetracycline hydrochloride (TC) caused 100%, 50% and 20% mortality rates among rats injected with 40 mg, 30 mg and 20 mg/100g. b.w. respectively; while the morta]ity rates were decreased to 50%, 20% and 10% when Panax ginseng (2 mg/100g. b.w.) injected with TC during 72 hrs. post-injection. Subacute-toxicity study demonstrated that TC caused severe hepato-nephrotoxicity (demonstrated by biochemical analysis of serum including: transferases , alkaline phosphatase, total protein, glucose, cholesterol urea and creatinine) in rats injected i.p. with 10 mg and 5 mg/100g. b.w. for 7 days of daily injection . These signes of toxicity were greatly diminished by P. ginseng addition to TC doses.

  • PDF

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.