• Title/Summary/Keyword: Protective Layer

Search Result 443, Processing Time 0.033 seconds

Characteristics of an MgO Green Sheet as a Protective Layer of AC-PDP

  • Park, Deok-Hai;Park, Min-Soo;Kim, Bo-Hyun;Ryu, Byung-Gil;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.387-390
    • /
    • 2006
  • The protective layer of AC-PDP was fabricated by laminating an MgO green sheet. The MgO green sheet was made by coating MgO solution composed of solvent, dispersant, binder, and MgO nano-powder. The MgO solution was coated by the die casting method on the base film. We fabricated three kinds of MgO green sheets of which thicknesses were 20, 28, and $40\;{\mu}m$, respectively. The MgO nano-powder showed lower CL intensity and ${\gamma}i$ than the e-beam MgO. The MgO green sheet applied panels showed low luminance and current density. The efficiency was almost same as the conventional e-beam MgO panel.

  • PDF

Influence of Image Sticking on Electra-Optical Characteristics in Alternating-Current Plasma Display Panels

  • Choi, J.H.;Jung, Y.;Jung, K.B.;Kim, S.B.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.760-763
    • /
    • 2003
  • We have investigated the electro-optical characteristics of image sticking in AC PDP. Although Image sticking is one of major factors to determine display quality in AC PDP, so far, it has not being reported why it is occurred and how we can prevent it. In this experiment, we have analyzed the effect of MgO protective layer and phosphor on the image sticking and we have measured the difference of firing voltage, brightness and discharge current between sticking image and normal image in AC PDP. As a result, Phosphor degradation is a more major factor than MgO protective layer and the firing voltage of gas discharge in sticking image is higher than that of normal discharge.

  • PDF

진공중에서의 알루미나 세라믹스의 Tribology 특성

  • 진동규;이충엽;전태옥;박홍식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.66-75
    • /
    • 1997
  • This study was undertaken to investigate tribology characteristics of the alumina ceramics($Al_2O_3$) of the various purity for the variation of ambient condition such as air and vacuum. The wear test was carried out under different experimental condition using the wear test device, which was designed for this study, and in which the annular surface of wear testing specimens as well as mate specimen made of STB2 steel, were subjected to sliding speed, applied load and the sliding distance. The results obtained were as follows. As the ambient pressure decreases, the friction coefficient increases because the protective layer made of absorption due to decrease of the amount of ambient gas can not be formed. As the friction coefficient paticularly for 85% alumina lower than 95% and 99.7% in the alumina purity increases by an influence of heat accumulation caused by small elastic modulus and thermal conductivity. The friction surface of ceramics can be protected in the air by the influence of the oxides transfered from STB2. However, in the vacuum, the protective layer made of the absorption substance can not be formed due to the decrease of ambient gas.

  • PDF

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

Discharge analysis of SrO- and SrCaO-PDP operated at lower voltage

  • Uchida, G.;Uchida, S.;Yano, T.;Awaji, N.;Kajiyama, H.;Shinoda, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.177-180
    • /
    • 2009
  • Here is presented the measurement on SrO- and SrCaO-PDP operated at lower voltage. SrO- and SrCaO-PDP attain high luminous efficacy at low voltage, where the breakdown voltage is 30 % lower than that of the ordinary MgO-PDP. A one-dimensional fluid model is applied for the simulation of PDP discharge. High VUV radiation efficiency is confirmed at high ${\gamma}_i$ and both low and high $V_s$ as in the experiment. Discharge analysis in simulation also shows that the high ${\gamma}_i$ protective layer leads to high plasma density especially near the cathode electrode, being responsible for high efficiency.

  • PDF

Reconstruction Characteristics of MgO (111) Textured Protective Layer by Over-Frequency Accelerated Discharge in AC Plasma Display Pannel

  • Kwon, Sang-Koo;Kim, Jeong-Ho;Moon, Seung-Kyu;Kim, Hyun-Ha;Park, Kyu-Ho;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.224-227
    • /
    • 2007
  • The reconstruction characteristics of MgO (111) textured protective layer by over-frequency accelerated discharge in AC-PDP were investigated and correlated to the variations of electronic structures. The reconstruction process and exaggerated grain growth (EGG) were explained by defect-assisted 2-D nucleation and growth mechanism combined with charged cluster model.

  • PDF

Preparation of MgO Protective layer for AC PDP by High Energy Particle Bombardment (고속 입자 충격을 도입한 AC PDP의 MgO 보호층 형성에 관한 연구)

  • Kim, Young-Kee;Park, Jung-Tae;Ko, Kwang-Sik;Kim, Gyu-Seob;Cho, Jung-Soo;Park, Chong-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.527-532
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with dc bias voltage of -10V showed lower discharge voltage and lower erosion rate byion bombardment than those samples prepared by conventional magnetron sputtering or E-beam evaporation. The main factor that improves the discharge characteristics by bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardement during deposition process.

  • PDF

Corrosion Inhibition Screening of 2-((6-aminopyridin-2-yl)imino)indolin-3-one: Weight Loss, Morphology, and DFT Investigations

  • Nadia Betti;Ahmed A. Al-Amiery
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.10-20
    • /
    • 2023
  • Because of its inexpensive cost, mild steel is frequently employed as a construction material in different industries. Unfortunately, because of its limited resistance to corrosion, a protective layer must be applied to keep it from decaying in acidic or basic environments. The presence of heteroatoms, such as nitrogen, oxygen, and pi-electrons in the Schiff base could cause effective adsorption on the mild steel surface, preventing corrosion. The weight loss method and scanning electron microscopy (SEM) were used to investigate the inhibitory effects of APIDO on mild steel in a 1 M hydrochloric acid environment. The efficiency of inhibition increased as the inhibitor concentration increased and decreased as the temperature increased. The SEM analysis confirmed that the corrosion inhibition of APIDO proceeded by the formation of an organic protective layer over the mild steel surface by the adsorption process. Simulations based on the density functional theory are used to associate inhibitory efficacy with basic molecular characteristics. The findings acquired were compatible with the experimental information provided in the research.