• Title/Summary/Keyword: Protective Layer

Search Result 442, Processing Time 0.018 seconds

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.

Characteristics Evaluation of Hobun Pigments according to Shell Types and Calcination (패각의 종류 및 소성 여부에 따른 호분안료의 특성 평가)

  • Ju Hyun Park;Sun Myung Lee;Myoung Nam Kim;Jin Young Hong
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.899-909
    • /
    • 2023
  • In this study, the material scientific characteristics of Hobun pigments used as white inorganic pigment for traditional cultural heritage were identified according to the type of shell and calcination and evaluated the stability of the preservation environment. For the purpose of this, we collected 2 different types of Hobun pigments made by oyster and clam shell and its calcined products(at 1,150℃). Hobun pigments before calcined identified calcium carbonate such as calcite, aragonite but calcination derived changing main composition to portlandite and calcite. Results of FE-SEM showed characteristics microstructure for each shell but pigments after calcined observed porous structure. Porous granule highly caused oil adsorption according to increase specific surface area of pigments. In addition, the whiteness improved after calcined pigments compared to non-calcined pigments, and the color improvement rate of Hobun pigment (CS) which made of clam shell was higher. As a result of the accelerated weathering test, the Hobun pigment-colored specimen had a color difference value of less than 2 after the test, which was difficult to recognize with the naked eye. In particular, the color stability has improved as the color difference value of the Hobun pigment is smaller after calcined compared to before non-calcined pigment. However, it was confirmed that the stability of the painting layer was lower in the specimen after calcined pigment. For antifungal activity test, Aspergillus niger, Tyromyces palustris and Trametes versicolor were used as test fungi, and all pigments were found to have preventive and protective effects against fungi. Especially, the antifungal effect of the calcined pigment was excellent, which is due to the stronger basicity of the pigment.