• Title/Summary/Keyword: Protective Layer

Search Result 442, Processing Time 0.028 seconds

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

Effect of Injin Butanol Fraction with Thin Layer Chromatography on Fas-mediated Apoptosis (인진butanol 분획의 TLC추출성분이 Fas-mediated Apoptosis에 미치는 영향)

  • 박용진;김영철;이장훈;우흥정
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.57-69
    • /
    • 2002
  • Objective: The aim of this study is to investigate the effect of Injin butanol fractions with Thin Layer Chromatography on Fas-mediated Apoptosis. Method: Injin-butanol fraction separated by TLC. MIT assay, cell cycle analysis, Caspase-3 protease assay, DNA fragmentation assay and quantitative RT-PCR were performed to evaluate the effects of TLC extraction of lnjin-butanol fraction on cell viability, cell cycle progression and apoptosis. Results: Scopoletin, luteolin, apigenin and unknown powder was isolated by TLC. Fas-mediated apoptosis analysis shows that scopoletin has inhibiting function on apoptosis. Caspase- 3 protease assay analysis shows that scopoletin inhibits activity of caspase-3. Quantitative RT-PCR analysis shows that no activity on caspase-3, but apoptosis inhibition cytokine -Bcl-2- is activated, and apoptosis activating cytokine -Bax- is unactivated. Conclusion: These results show that each fraction of Injin-butanol TLC extraction, especially scopoletin, acts as a protective function on liver cell viability, and inhibitory function on apoptosis. (J Korean Oriental Moo 2002;23(2):57-69)

  • PDF

Charactrerization of microstructure, hardness and oxidation behavior of carbon steels hot dipped in Al and Al-1% Si molten baths (Al과 Al-1% Si 용융조에서 용융 도금된 탄소강의 경도, 산화 및 미세조직의 특성)

  • Hwang, Yeon-Sang;Won, Seong-Bin;Chunyu, Xu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.109-110
    • /
    • 2013
  • Medium carbon steel was aluminized by hot dipping into molten Al or Al-1%Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small a mount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1%Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$ however decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

  • PDF

Synthesis of Hexagonal Boron Nitride Nanosheet by Diffusion of Ammonia Borane Through Ni Films

  • Lee, Seok-Gyeong;Lee, Gang-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.1-252.1
    • /
    • 2013
  • Hexagonal boron nitride (h-BN) is a two dimensional material which has high band-gap, flatness and inert properties. This properties are used various applications such as dielectric for electronic device, protective coating and ultra violet emitter so on. 1) In this report, we were growing h-BN sheet directly on sapphire 2"wafer. Ammonia borane (H3BNH3) and nickel were deposited on sapphire wafer by evaporate method. We used nickel film as a sub catalyst to make h-BN sheet growth. 2) During annealing process, ammonia borane moved to sapphire surface through the nickel grain boundary. 3) Synthesized h-BN sheet was confirmed by raman spectroscopy (FWHM: ~30cm-1) and layered structure was defined by cross TEM (~10 layer). Also we controlled number of layer by using of different nickel and ammonia borane thickness. This nickel film supported h-BN growth method may propose fully and directly growing on sapphire. And using deposited ammonia borane and nickel films is scalable and controllable the thickness for h-BN layer number controlling.

  • PDF

High Temperature Oxidation Characteristics of Ti-Al Intermetallic Compounds (Ti-Al계 금속간화합물의 고온산화특성)

  • 오인석;최창우;김길무;홍준표;김종집
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.253-261
    • /
    • 1992
  • Ti-Al intermetallic compounds which can be used in gas turbine at elevated temperature were inves-tigated in order to improve oxidation resistance by the formation of protective oxide scale. Four Ti-Al alloys were prepared by plasma arc melting. As the amount of Al was increased among the alloys, oxida-tion resistance was improved by the formation of relatively purer Al2O3 layer. However, the alloys which have less amount of Al formed a duplex layer of Al2O3 and TiO2. When samples were oxidized in pure oxygen instead of air, oxidation resistance was improved because of formation of the purer Al2O3 layer.

  • PDF

Durability of Various Anti-Corrosive Organic Coatings in Marine Environment for Twelve Years

  • Yamamoto, Mashiro;Kajiki, Toshitaka;Kamon, Toshikuni;Yoshida, Kotaro
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • In order to clarify the durability of protective coatings for maritime steel structures, various anti-corrosive organic coated steel samples were exposed for twelve years in semitropical marine environment at Miyakojima Island, Okinawa, JAPAN. Samples were various organic coated steel pipes, 4.0 m in length and 150 mm in diameter. While the bare steel pipe entirely corroded in 4.5 mm thickness in four and half years, these organic coated steel pipes exhibited protective appearances after twelve-year-exposure except for the defect in the coatings. Polyethylene (PE) lining pipe exhibited a good protective performance. Urethane painted pipe was also good but some barnacles stuck to its surface. A combination of petrolatum tape and FRP cover showed sufficient corrosion resistance for steel surface. The correlation in results between exposure and laboratory acceleration test was examined. It was found that salt spray test (SST) results corresponded to rusted area of scratched portion and that adhesion change of coating layer corresponded to the rotating immersion test result. Among the on-site measured data, volume resistivity is utilized for the index of corrosion protection performance of organic coating.

A Study on the Fluoro-polymer Composite Coatings for Protecting the Corrosion of Fossil-fuel Power Plants

  • Kang, Min Soo;Lee, Byung Seung;Chang, Hyun Young;Jin, Tae Eun;So, Il Soo
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2007
  • Several heavy duty coatings at an every kind industry facilities to various systems currently have been applied review to the many industry fields. Corrosion-protective characteristics in the case of novolac epoxy among them and unsaturated polyester have been applied most widely. epoxy and flake heavy duty coatings are applied for such reason in an every kind facilities(stack, FGD, cooler, chemical tank etc) of a fossil-fuel power plants Cases of the fossil-fuel power plants are exposed to more severe corrosion environment compared with other facilities and It is difficult to display the performance of long-term method at apply to be the partial. Our study shows fluoro-polymer composite coating method to overcome of the limit. The comparison did previous method and heavy duty coating about FGD plants most at a corrosion environment among fossil-fuel power plants. Additionally, other facilities examined different heavy duty method. The design mode of fluoro-polymer composite coating according to an every kind facilities show extensive methods that are characteristic revelation of film(top, middle and primer layer) composition of the paint, film thickness in accordance with a facilities corrosion and the corrosion protective effectiveness to come into being use fluoro-polymer composite with heavy duty paint(epoxy).

A Study of Clothings for Cold Prevention -Protective Effects of Vinyl Sheet against Wind- (피복(被服)의 보온효과에 관(關)한 연구(硏究) -비닐의 방풍효과를 중심(中心)으로-)

  • Shim, Sang-Hwang;Cha, Chul-Hwan;Yoon, Jong-June;Lee, Chung-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.2 no.1
    • /
    • pp.81-87
    • /
    • 1969
  • Three Combinations of cloths were evaluated for the protective effects of different kinds of clothings in cold environments. Table 1 shows the components of the three models of clothings. A prototype was made by putting a sheet of vinyl at the middle layer of raw cotton in a fabric-quilt cloths. A glove mannequin was covered by each of these cloths. The globes contained 1,000 cc of hot water about $40^{\circ}C$. Tele-thermistors were fixed in order to check the temperature of cloths space and water temperature for evaluation of calorie-loss and climate of clothings. Results are summarized as follows: 1) Without wind, there is no significant difference of air temperatures between sti-parka and quilt-wear clothing. 2) The prototype with vinyl sheet best protects against wind, the next is the ski-parka. Quilt-wear protects the least. 3) It is well-known that a working-clothing needs not have any separate liners nor outers. 4) For innermost layer of a clothing preventing cold, a cotton-fabrics is recommended and a water-proof cloths for outer layer. 5) Heat-loss was calculated from the cooling degrees of water. Calorie-loss was $910cal/m^2/hr$. when bared, but with the prototype of vinyl sheets the calorie-loss was $350cal/m^2/hr$. (38.5% of bared). Quilt-wear and ski-parka were 380(41.8%) and $440cal/m^2/hr$. (48.4%) respectively.

  • PDF

Improvement of the shieldability and lightweight of a radiation protective apron (방사선 방호용 에이프런의 경량화와 차폐능 개선)

  • Kim, Young-Keun;Jang, Young-Ill;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • In this work, we characterized the shieldability and lightweight of radiation protective aprons which were consisted of various metal(Pb, Sn, Ni, Ti and Cu) by measuring the x-ray dose transmitted through the filters. The transmitted ratio and lead equivalent of various metal were obtained by linear interpolation and the lead equivalent of double layered filters contained Pb layer was determined. The transmitted ratio of the apron(0.25 mmPb) specified in KS B 0845 was 5.2%. The transmitted ratio of the filters at the thickness of 0.6 mm was decreased in the other of Ni(32.60%), Ti(17.75%), Cu(13.25%) and Sn(3.84%). From the results of experimental evaluation for combined filter of Pb and Sn, it was founded that in the case of the first Sn layer, the lead equivalent was higher than that of the first Pb layer. The lead equivalent corresponding to apron of 0.25 mmPb was obtained in the double layered filters of Sn(0.19 mm) - Pb(0.1 mm) and Pb(0.1 mm) - Sn(0.37 mm). Thus, the Sn-Pb filter had the lower weight about 13% than apron of 0.25 mmPb.

  • PDF

Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle (화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.580-584
    • /
    • 2007
  • The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.