• Title/Summary/Keyword: Protective Film

Search Result 259, Processing Time 0.031 seconds

Investigation of Sweet and Sour Corrosion of Mild Steel in Oilfield Environment by Polarization, Impedance, XRD and SEM Studies

  • Paul, Subir;Kundu, Bikramjit
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.249-256
    • /
    • 2018
  • Metallic structures in the oil and gas production undergo severe degradation due to sweet and sour corrosion caused by the presence of $CO_2$ and $H_2S$ in the fluid environment. The corrosion behavior of 304 austenitic stainless was investigated in the presence of varying concentrations of $CO_2$ or $H_2S$ and $CO_2+H_2S$ to understand the effect of the parameters either individually or in combination. Potentiodynamic polarization study revealed that a small amount of $CO_2$ aided in the formation of calcareous deposit of protective layer on passive film of 304 steel, while increase in $CO_2$ concentration ruptured the layer resulting in sweet corrosion. The presence of $S^{2-}$ damaged the passive and protective layer of the steel and higher levels increased the degradation rate. Electrochemical impedance studies revealed lower polarization resistance and impedance at higher concentration of $CO_2$ or $H_2S$, supporting the outcomes of polarization study. XRD analysis revealed different types of iron carbides and iron sulphides corresponding to sweet and sour corrosion as the corrosion products, respectively. SEM analysis revealed the presence of uniform, localized and sulphide cracking in sour corrosion and general corrosion with protective carbide layer amid for sweet corrosion.

A Study on The Development and Evaluation of Mine Detective Gear (지뢰 탐지용 방호복 구성과 방호성능 및 착용감 평가)

  • 손부현;최혜선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.4
    • /
    • pp.707-718
    • /
    • 2001
  • The purpose of this study is to evaluate a newly developed protective suit with the fragments of grenade. The protection efficiency should be strengthened upon the degree of wound. The fragment weight of the used grenade was measured and the kinetic energy of the maximum speed of the fragments in the field test was 137.7J and this could be the protective efficiency test by the multitude fragments in less than 0.031g of the M16A1. The panel inserted to the new demining suit has protection rate of 100% within the distance of 1m and sample II has protection rate of 100% only beyond the distance of 5m. The test showed that the protection rate on the protective suit of the existing garment was comparatively high, however, the protection rate of the sleeve part was very low. The new demining suit through the research demand some complementary measures to lower the temperatures in ear, average skin temperatures, and the temperatures-humidity inside the clothing for summer climate condition, It showed that 30 minutes of rest on the clothing was difficult to go back to the original condition. But in winter climate condition, there was no problem in the temperature, humidity, and comfort to go back to the original condition during the rest and was better in warmth.

  • PDF

Friction and Wear at Dry Sliding Low Carbon Steel Surfaces Under Vacuum Conditions (진공분위기 내에서 건조마찰 미끄럼운동을 하는 저탄소강 표면의 마찰마모 특성)

  • 공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.29-38
    • /
    • 1994
  • The friction and wear of mild steel at dry sliding surfaces under different vacuum conditions have been investigated to understand the wear mechanisms. For the test, a ball-ondisk typed wear-rig has been built and implemented, allowing control of sliding speed, load and vacuum. Results show that, at a high sliding velocity, friction of low carbon steel (SS41) under a high vacuum is much higher than that of ambient condition and wear is much severer. It is due to lack of effective oxidation film formation on which steel surfaces could protect themselves against the severe wear. It has been shown, however, that there is a critical regime with contact conditions (at a low sliding velocity, a low load, and under a medium vacuum) at which effective, protective films of low carbon steel have been built on the surfaces in a friction process with a self-regulating way, resulting in both very low coefficients of friction (about 0.3) and mild wear. In order to investigate the protective films on steel surfaces, the worn surfaces and the wear debris have been experimentally analyzed with SEM, AES/SAM and XRD. A theoretical analysis of frictional heating at sliding surfaces, and an experimental analysis of the influence of oxidation wear under various vacuum conditions are described. The important variables on which self-formations of protective films at dry sliding surfaces depend, and the wear mechanisms are also investigated.

Effect of Alkaline Earth Metal Oxides addition on the Low-voltage Characteristics of MgO Films as a Protective layer for AC PDPs (PDP 보호막용 MgO 박막의 저전압 특성에 미치는 알카리토금속산화물 첨가 효과)

  • Jo, Jin-Hui;Kim, Rak-Hwan;Kim, Jeong-Yeol;Lee, Yu-Gi;Kim, Hui-Jae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.441-445
    • /
    • 1999
  • Alkaline earth metal oxides were added to the conventional MgO films as a protective layer for dielectric materials to have lower firing voltage(Vf) of the plasma display panel(PDP). Panels with various protective layers of MgO-alkaline earth metal oxides were prepared on glass by using e-beam evaporation and its effect on firing voltage characteristics were investigated. (Ba-Mg)O films had poor voltage characteristics because of higher activation energy of BaO. But, (Sr-Mg)O, (Ca-Mg)O and (Ca-Sr-Mg) O had better voltage characteristics than the conventional MgO. A mixture film of (Mg-Ca-Sr)O show the lowest firing voltage which is less than that of MgO by 20V. The chemical composition to have lowest firing voltage is MgO:SrO:CaO ratio of 6:2:2. The mixture of MgO-Alkaline earth metal oxides films showed good transmittance properties within the visual range.

  • PDF

Terabit-per-square-inch Phase-change Recording on Ge-Sb-Te Media with Protective Overcoatings

  • Shin Jin-Koog;Lee Churl Seung;Suh Moon-Suk;Lee Kyoung-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.185-189
    • /
    • 2005
  • We reported here nano-scale electrical phase-change recording in amorphous $Ge_2Sb_2Te_5$ media using an atomic force microscope (AFM) having conducting probes. In recording process, a pulse voltage is applied to the conductive probe that touches the media surface to change locally the electrical resistivity of a film. However, in contact operation, tip/media wear and contamination could major obstacles, which degraded SNR, reproducibility, and lifetime. In order to overcome tip/media wear and contamination in contact mode operation, we adopted the W incorporated diamond-like carbon (W-DLC) films as a protective layer. Optimized mutilayer media were prepared by a hybrid deposition system of PECVD and RF magnetron sputtering. When suitable electrical pulses were applied to media through the conducting probe, it was observed that data bits as small as 25 nm in diameter have been written and read with good reproducibility, which corresponds to a data density of $1 Tbit/inch^2$. We concluded that stable electrical phase-change recording was possible mainly due to W-DLC layer, which played a role not only capping layer but also resistive layer.

  • PDF

A study on the water absorption in protective coatings (방식도막에 있어서 물의 흡수에 관한 연구)

  • Park Jin-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.55-59
    • /
    • 1998
  • The water absorption in protective coatings, which may greatly influence the durability of these coatings, was studied using quartz crystal microbalance and electrochemical impedance technique. The water absorption in protective coatings and the change of coating capacitance with concentration of electrolyte were measured. The water absorption in coatings seems to be driven by osmotic pressure, and larger amount of water was absorbed in thinner coatings at initial stage of absorption. The amount of water absorbed in coatings changed with the type and crosslinking density of resin used in coating formulation. When water absorption and desorption of coating occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thinner film.

Oxidation of CrAlN and CrZrN Films (CrAlN과 CrZrN의 산화)

  • Kim, Min-Jeong;Kim, Seul-Gi;Lee, Sang-Yul;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.33-35
    • /
    • 2011
  • Films of CrAlN and CrZrN were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors were investigated. CrAlN films consisted of dense, polycrystalline CrN and AlN fine columns. The formed oxides consisted primarily of crystalline $Cr_2O_3$ incorporated with $Al_2O_3$. The oxide layers were thin and compact so as to make CrAlN films more protective than CrN films. In case of CrZrN films, Zr atoms were dissolved in the CrN phase. Zr atoms advantageously refined the columnar structure, reduced the surface roughness, and increased the micro-hardness. However, the addition of Zr did not increased oxidation resistance, mainly because Zr was not a protective element. All the deposited films displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on their surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one, whereas the CrN film oxidized to $Cr_2O_3$.

  • PDF

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Effects of surface geometry of MgO protective layer for AC-PDPs

  • Park, Sun-Young;Moon, Sung-Hwan;Heo, Tae-Wook;Kim, Jae-Hyuk;Lee, Joo-Hwi;Kim, Hyeong-Joon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1395-1398
    • /
    • 2007
  • MgO thin films were deposited by e-beam evaporator using the 2-step method for alternate current plasma display panels (AC-PDPs). Glancing angle deposition (GLAD) method was employed to produce various surface geometry of the thin film; the bottom layer was deposited on a substrate by normal e-beam evaporation method and the top layer was deposited on bottom layer with $85^{\circ}$ by GLAD method. Results show that firing and sustain voltages improved as the sharpness of surface and isolated columnar structures increases, respectively.

  • PDF

Characteristics of an MgO Green Sheet as a Protective Layer of AC-PDP

  • Park, Deok-Hai;Park, Min-Soo;Kim, Bo-Hyun;Ryu, Byung-Gil;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.387-390
    • /
    • 2006
  • The protective layer of AC-PDP was fabricated by laminating an MgO green sheet. The MgO green sheet was made by coating MgO solution composed of solvent, dispersant, binder, and MgO nano-powder. The MgO solution was coated by the die casting method on the base film. We fabricated three kinds of MgO green sheets of which thicknesses were 20, 28, and $40\;{\mu}m$, respectively. The MgO nano-powder showed lower CL intensity and ${\gamma}i$ than the e-beam MgO. The MgO green sheet applied panels showed low luminance and current density. The efficiency was almost same as the conventional e-beam MgO panel.

  • PDF