본 논문에서는 전립선 초음파 영상에서 형태학적 특징을 이용하여 전립선 영역을 검출하는 방법을 제안한다. 제안된 방법의 첫 단계에서는 전립선 영역의 상단 경계선을 추출한다. 초음파 촬영으로 획득한 영상에서 히스토그램 정보를 이용해 명암대비를 조정하여 전립선 영역의 상단 경계선을 검출하기 위한 기준 객체들을 추출하고, 기준 객체들의 하단 경계선을 Monotone cubic spline 보간법을 적용하여 상단 경계선을 추출한다. 두 번째 단계에서는 전립선 초음파 영상에서 추출한 상단 경계선보다 아래에 위치한 영역에 대해 오츠 이진화를 적용하여 전립선 하단 경계선을 추출한다. 마지막으로 전립선 상단 경계선과 하단 경계선을 연결하여 전립선 영역을 추출한다. 수동으로 측정한 전립선 영역과 비교 분석한 결과, 전립선 초음파 영상이 갖는 형태학적 특징을 이용한 방법으로 전립선 영역을 추출할 수 있는 것을 확인하였다.
본 논문에서는 기울기와 밝기값 분포 정보를 고려하여 전립선 객체를 분할하는 방법을 제안한다. 제안방법은 네 단계로 이루어진다. 첫째, 일정 간격으로 방사선을 생성한다. 이 때, 방사선의 시작 위치와 길이를 산정함으로써 잡음의 영향을 최소화 한다. 둘째, 방사선에서 얻은 프로파일을 기울기 기준으로 경계점 후보들을 정렬하고 정렬 된 순서에 따라 우선순위를 부여한다. 셋째, 기울기 우선순위와 자기값 분포를 사용하여 경계점을 추출한다. 마지막으로 경계점 추출 오류를 줄이기 위하여 추출된 경계점을 B-스플라인 보간으로 보정한다. 정확성 평가를 위하여 전문가가 수동 분할한 결과와 본 제안방법을 적용하여 얻은 결과간 평균거리차이 측정과 중복지역비율 측정을 수행한다. 실험결과 평균거리차이는 1.09mm, 표준편차는 $\pm0.20mm$로 측정되었고, 중복지역비율은 92%로 측정되었다.
In Korea, prostate cancer accounted for generating growth rate second the following thyroid cancer, because of western dietary habits. Survival rate of prostate cancer after clinical behavior is changed depend on follow-up management. A telemedicine have been applied to replacement of medical specialist in rural area, and a quick reaction to emergency situation. Our study developed prostate 3-dimensional (3D) visualization program and designed prostate aftercare system architecture, called smart care, using a device that can access the Internet. Region of interest (ROI) in prostate was manually segmented by physicians and visualized to 3D objects and sent to PACS Server as DICOM images. So, medical personnel could confirm patients' data along with 3D images not only PACS system, but also portable device like a smart phone. As a result, we conducted the aftercare service to 98 patients and visualize 3D prostate images. 3D images had advantage to instinctively apprehend where lesion is and make patients to understand state of their disease easily. In the future, should conduct an aftercare service to more patients, and will obtain numerical index through follow-up study to an accurate analysis.
최근 많은 연구자와 실무자들이 모집단에 내재해 있는 여러 다른 그룹(class, segment)간의 이질성을 밝혀내고 객체들을 그룹별로 세분화하는 방법 중 하나로 잠재그룹 모델(Latent class model)을 고려하고 있다. 이 논문에서는 2000년도에 국립 암 센터에 접수된 한국 내 연령별 전립선암 사망자수 자료를 기반으로, 잠재그룹 포아송 모형을 이용하여 전립선암 환자의 연령에 따른 그룹화를 시도한다. 최우추정법 등 고전적 추론방법의 한계를 극복하기 위하여 Markov Chain Monte Carlo (MCMC) 방법을 도구로 한 베이지안 추정 방법을 제안한다. 제안된 베이지안 방법의 장점은 용이한 모수추정과 추정오차의 제공, 그리고 각 객체의 소속그룹의 판정과 이에 따르는 오차, 즉, 객체의 각 군집에 속할 확률, 도 구할 수 있다는 것이다. 또한 주어진 자료들에 대해 가장 적합한 그룹의 수를 결정하는 방법을 제시하여 그룹의 수나 세분화의 근거를 사전에 제공하지 않아도 자료가 주는 정보로부터 이들을 자동으로 결정하는 방법을 제시한다.
본 논문에서는 남성의 하반신을 촬영한 MRI 영상으로부터 전립선을 분할하는 알고리즘을 제안한다. 우선 3 차원 입체 영상을 학습하기 위해 3D 컨볼루션 계층(convolutional layer) 및 3D 풀링 계층(pooling layer)에 기반한 네트워크를 제안한다. 다음으로 네트워크의 최후단에 해당하는 전연결 계층(fully connected layer)의 강인한 학습을 돕는 잡음 계층을 제안한다. 잡음 계층은 네트워크의 학습 파라미터 혹은 출력 영상에 가우시안 잡음를 더함으로써 드롭 아웃과 같이 훈련 영상에 대한 과적합(overfitting)을 막고 테스트 영상에 강인한 네트워크의 학습을 돕는다. 마지막으로 실험을 통해 제안하는 기법이 기존 기법에 비해 우수한 분할 성능을 보임을 확인한다.
Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.