• 제목/요약/키워드: Prostate Segmentation

검색결과 17건 처리시간 0.021초

형태학적 특징을 이용한 초음파 영상에서의 자동 전립선 분할 (Automatic Prostate Segmentation from Ultrasound Images using Morphological Features)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.865-871
    • /
    • 2022
  • 본 논문에서는 전립선 초음파 영상에서 형태학적 특징을 이용하여 전립선 영역을 검출하는 방법을 제안한다. 제안된 방법의 첫 단계에서는 전립선 영역의 상단 경계선을 추출한다. 초음파 촬영으로 획득한 영상에서 히스토그램 정보를 이용해 명암대비를 조정하여 전립선 영역의 상단 경계선을 검출하기 위한 기준 객체들을 추출하고, 기준 객체들의 하단 경계선을 Monotone cubic spline 보간법을 적용하여 상단 경계선을 추출한다. 두 번째 단계에서는 전립선 초음파 영상에서 추출한 상단 경계선보다 아래에 위치한 영역에 대해 오츠 이진화를 적용하여 전립선 하단 경계선을 추출한다. 마지막으로 전립선 상단 경계선과 하단 경계선을 연결하여 전립선 영역을 추출한다. 수동으로 측정한 전립선 영역과 비교 분석한 결과, 전립선 초음파 영상이 갖는 형태학적 특징을 이용한 방법으로 전립선 영역을 추출할 수 있는 것을 확인하였다.

영상의 밝기값과 기울기 정보를 이용한 MR영상에서 전립선 자동분할 (Automatic Segmentation of the Prostate in MR Images using Image Intensity and Gradient Information)

  • 장유진;조현희;홍헬렌
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권9호
    • /
    • pp.695-699
    • /
    • 2009
  • 본 논문에서는 기울기와 밝기값 분포 정보를 고려하여 전립선 객체를 분할하는 방법을 제안한다. 제안방법은 네 단계로 이루어진다. 첫째, 일정 간격으로 방사선을 생성한다. 이 때, 방사선의 시작 위치와 길이를 산정함으로써 잡음의 영향을 최소화 한다. 둘째, 방사선에서 얻은 프로파일을 기울기 기준으로 경계점 후보들을 정렬하고 정렬 된 순서에 따라 우선순위를 부여한다. 셋째, 기울기 우선순위와 자기값 분포를 사용하여 경계점을 추출한다. 마지막으로 경계점 추출 오류를 줄이기 위하여 추출된 경계점을 B-스플라인 보간으로 보정한다. 정확성 평가를 위하여 전문가가 수동 분할한 결과와 본 제안방법을 적용하여 얻은 결과간 평균거리차이 측정과 중복지역비율 측정을 수행한다. 실험결과 평균거리차이는 1.09mm, 표준편차는 $\pm0.20mm$로 측정되었고, 중복지역비율은 92%로 측정되었다.

스마트 케어 시스템에서의 3차원 전립선 암 가시화 도구 개발 (Develop 3D Prostate Cancer Visualization Tool in Smart Care System)

  • 안병욱;신승원;최문형;정승은;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.163-169
    • /
    • 2016
  • In Korea, prostate cancer accounted for generating growth rate second the following thyroid cancer, because of western dietary habits. Survival rate of prostate cancer after clinical behavior is changed depend on follow-up management. A telemedicine have been applied to replacement of medical specialist in rural area, and a quick reaction to emergency situation. Our study developed prostate 3-dimensional (3D) visualization program and designed prostate aftercare system architecture, called smart care, using a device that can access the Internet. Region of interest (ROI) in prostate was manually segmented by physicians and visualized to 3D objects and sent to PACS Server as DICOM images. So, medical personnel could confirm patients' data along with 3D images not only PACS system, but also portable device like a smart phone. As a result, we conducted the aftercare service to 98 patients and visualize 3D prostate images. 3D images had advantage to instinctively apprehend where lesion is and make patients to understand state of their disease easily. In the future, should conduct an aftercare service to more patients, and will obtain numerical index through follow-up study to an accurate analysis.

잠재그룹 포아송 모형을 이용한 전립선암 환자의 베이지안 그룹화 (Bayesian Clustering of Prostate Cancer Patients by Using a Latent Class Poisson Model)

  • 오만숙
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.1-13
    • /
    • 2005
  • 최근 많은 연구자와 실무자들이 모집단에 내재해 있는 여러 다른 그룹(class, segment)간의 이질성을 밝혀내고 객체들을 그룹별로 세분화하는 방법 중 하나로 잠재그룹 모델(Latent class model)을 고려하고 있다. 이 논문에서는 2000년도에 국립 암 센터에 접수된 한국 내 연령별 전립선암 사망자수 자료를 기반으로, 잠재그룹 포아송 모형을 이용하여 전립선암 환자의 연령에 따른 그룹화를 시도한다. 최우추정법 등 고전적 추론방법의 한계를 극복하기 위하여 Markov Chain Monte Carlo (MCMC) 방법을 도구로 한 베이지안 추정 방법을 제안한다. 제안된 베이지안 방법의 장점은 용이한 모수추정과 추정오차의 제공, 그리고 각 객체의 소속그룹의 판정과 이에 따르는 오차, 즉, 객체의 각 군집에 속할 확률, 도 구할 수 있다는 것이다. 또한 주어진 자료들에 대해 가장 적합한 그룹의 수를 결정하는 방법을 제시하여 그룹의 수나 세분화의 근거를 사전에 제공하지 않아도 자료가 주는 정보로부터 이들을 자동으로 결정하는 방법을 제시한다.

3D CNN 기반 전립선 MRI 영상 분할 기술 (3D CNN-Based Segmentation of Prostate MR images)

  • 문주혁;최환;이세호;장원동;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.145-146
    • /
    • 2017
  • 본 논문에서는 남성의 하반신을 촬영한 MRI 영상으로부터 전립선을 분할하는 알고리즘을 제안한다. 우선 3 차원 입체 영상을 학습하기 위해 3D 컨볼루션 계층(convolutional layer) 및 3D 풀링 계층(pooling layer)에 기반한 네트워크를 제안한다. 다음으로 네트워크의 최후단에 해당하는 전연결 계층(fully connected layer)의 강인한 학습을 돕는 잡음 계층을 제안한다. 잡음 계층은 네트워크의 학습 파라미터 혹은 출력 영상에 가우시안 잡음를 더함으로써 드롭 아웃과 같이 훈련 영상에 대한 과적합(overfitting)을 막고 테스트 영상에 강인한 네트워크의 학습을 돕는다. 마지막으로 실험을 통해 제안하는 기법이 기존 기법에 비해 우수한 분할 성능을 보임을 확인한다.

  • PDF

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • 시스템엔지니어링학술지
    • /
    • 제15권2호
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.