• 제목/요약/키워드: Propulsive performances

검색결과 20건 처리시간 0.017초

Propulsive Performance Analysis of Ducted Marine Propulsors with Rotor-Stator Interaction

  • Jang, Jin-Ho;Yu, Hye-Ran;Jung, Young-Rae;Park, Warn-Gyu
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.31-41
    • /
    • 2004
  • A ducted marine propulsor has been widely used for the thruster of underwater vehicles for protecting collision damage, increasing propulsive efficiency, and reducing cavitation. Since a single-stage ducted propulsor contains a set of rotor and stator inside an annular duct, the numerical analysis becomes extremely complex and computationally expensive. However, the accurate prediction of viscous flow past a ducted marine propulsor is essential for determining hydrodynamic forces and the propulsive performances. To analyze a ducted propulsor having rotor-stator Interaction, the present work has solved 3D incompressible RANS equations on the sliding multiblocked grid. The flow of a single stage turbine flow was simulated for code validation and time averaged pressure coefficients were compared with experiments. Good agreement was obtained. The hydrodynamic performance coefficients were also computed.

대형유조선의 경사상태011서의 저항추진 성능추정 (Prediction of Propulsive Performance of VLCC at Heeled and Trimmed Conditions)

  • 양지만;김효철
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.307-314
    • /
    • 2005
  • In recent years, many environmentally disastrous oil spill accidents from damaged vessels become worse especially when the early treatment is not prompt enough. To properly handle this type of accidents and prevent further disasters, international organizations establish and impose various rules and regulations. In assessing the damages and providing salvage operations, the propulsive performance of damaged vessels is of great importance, as well as for containing oil spill while the vessels are being towed or self-propelled. Until now, many naval hydrodynamics researches have focused on the propulsive performance in normal operating conditions and only a few studies for damaged vessels are found in literature. In this paper experimental method is used to study the Propulsive performance of a very large crude-oil carrier (VLCC) in .heeled and/or trimmed conditions.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

대형유조선의 저항추진성능에 미치는 자세변화의 영향에 관한 연구 (A Study on the Effect of the Heeled and Trimmed Conditions on Propulsive Performance of VLCC)

  • 양지만;이신형;김효철
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.275-284
    • /
    • 2006
  • In recent years, many environmentally disastrous maritime accidents resulted from oil or fuel spills from damaged vessels. The situation becomes worse especially when the early counter treatment is not prompt enough. To properly handle this type of accidents and prevent further disasters, the propulsive performance of damaged vessels must be better understood for salvage operations, as well as for containing oil spills while the vessels are being towed or self-propelled. Until now, many hydrodynamic studies have focused on the propulsive performance of undamaged vessels but only a few studies on that of damaged vessels. in this paper, both experimental and computational methods are used to study the propulsive performance of a VLCC in heeled and/or trimmed conditions. For experimental studies, measurement systems should be modified to adapt to the variations of attitude of a damaged vessel. For numerical studies, CFD programs should be also extended to be applied to asymmetrically floating conditions.

Flapping운동의 최적공력성능을 위한 익형 연구 (A Study of an Airfoil for Optimal Aerodynamic Performance of Flapping Motion)

  • 이정상;김종암;노오현
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.24-32
    • /
    • 2003
  • In this work, we propose a new idea of flapping airfoil design for optimal aerodynamic performance from detailed computational investigations of flow physics. Generally, flapping motion which is combined with pitching and plunging motion of airfoil, leads to complex flow features such as leading edge separation and vortex street. As it is well known, the mechanism of thrust generation of flapping airfoil is based on inverse Karman-vortex street. This vortex street induces jet-like flow field at the rear region of trailing edge and then generates thrust. The leading edge separation vortex can also play an important role with its aerodynamic performances. The flapping airfoil introduces an alternative propulsive way instead of the current inefficient propulsive system such as a propeller in the low Reynolds number flow. Thrust coefficient and propulsive efficiency are the two major parameters in the design of flapping airfoil as propulsive system. Through numerous computations, we found the specific physical flow phenomenon which governed the aerodynamic characteristics in flapping airfoil. Based on this physical insight, we could come up with a new kind of airfoil of tadpole-shaped and more enhanced aerodynamic performance.

Improvement of prediction methods of power increase in regular head waves using calm-water and resistance tests in waves

  • Chun, Ho-Hwan;Lee, Cheol-Min;Lee, Inwon;Choi, Jung-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.278-291
    • /
    • 2021
  • This paper applies load variation method to predict speed-power-rpm relationship along with propulsive performances in regular head waves, and to derive overload factors (ITTC, 2018). 'Calm-water tests' and 'resistance test in waves' are used. The modified overload factors are proposed taking non-linearity into consideration, and applied to the direct powering, and resistance and thrust identity method. These indirect methods are evaluated through comparing the speed-power-rpm relationships with those obtained from the resistance and self-propulsion tests in calm water and in waves. The objective ship is KVLCC2. The load variation method predicts well the speed-power-rpm relationship and propulsion performances in waves. The direct powering method with modified overload factors also predicts well. The resistance and thrust identity method with modified overload factor predicts with a little difference. The direct powering method with overload factors predicts with a relatively larger difference.

달리기 시 운동화 중저의 경도가 신발굴곡각도의 크기에 미치는 영향 (The Influence of Midsole Hardness of Running Shoes on Shoes Flex Angle during Running)

  • 목승한;곽창수;권오복
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.85-103
    • /
    • 2004
  • This study was conducted to determine what effects would the midsole hardness of running shoes have on shoe flex angle and maximum propulsive force. Furthermore, the relationship between the shoes flex angle and maximum propulsive force was elucidated in order to provide basic data for developing running shoes to improve sports performances and prevent injuries. The subjects employed in the study were 10 college students majoring in physical education who did not have lower limbs injuries for the last one year and whose running pattern was rearfoot strike pattern of normal foot. The shoes used in this study had 3different hardness, shore A 40(soft), 50(medium) and 60(hard). The subjects were asked to run at a speed of $4{\pm}0.08m/sec$, and their movements were videotaped with 2 S-VHS video-cameras and measured with a force platform. And the following results were obtained after analyzing and comparing the variables. 1. Although the minimum angle of shoes flex angle was estimated to appear at SFA4, it appeared at SFA2 except in those shoes with the hardness of 40. 2. The minimum angle of shoes flex angle was $145.1^{\circ}$ with barefoot. Among the shoes with different hardness, it was the smallest when the hardness was 50 at $149.9^{\circ}$. The time to the minimum angle was 70.7% of the total ground contact time. 3. Maximum propulsive force according to midsole hardness was the largest when the hardness was 50 at $1913.9{\pm}184.3N$. There was a low correlation between maximum propulsive force and shoes flex angle.

저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율 (THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW)

  • 최종혁;맹주성;한철희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.159-163
    • /
    • 2009
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to calculate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion devices for the given Reynolds number flow.

  • PDF

저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율 (THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW)

  • 안상준;최종혁;맹주성;한철희
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.

Comparative study on the prediction of speed-power-rpm of the KVLCC2 in regular head waves using model tests

  • Yu, Jin-Won;Lee, Cheol-Min;Seo, Jin-Hyeok;Chun, Ho Hwan;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.24-34
    • /
    • 2021
  • This paper predicts the speed-power-rpm relationship in regular head waves using various indirect methods: load variation, direct powering, resistance and thrust identity, torque and revolution, thrust and revolution, and Taylor expansion methods. The subject ship is KVLCC2. The wave conditions are the regular head waves of λ/LPP = 0.6 and 1.0 with three wave steepness ratios at three ship speeds of 13.5, 14.5 and 15.5 knots (design speed). In the case of λ/LPP = 0.6 at design speed, two more wave steepness ratios have been taken into consideration. The indirect methods have been evaluated through comparing the speed-power-rpm relationships with those obtained from the resistance and self-propulsion tests in calm water and in waves. The load variation method has been applied to predict propulsive performances in waves, and to derive overload factors (ITTC, 2018). The overload factors have been applied to obtain propulsive efficiency and propeller revolution. The thrust and revolution method (ITTC, 2014) has been modified.