• Title/Summary/Keyword: Propulsion shafting system

Search Result 74, Processing Time 0.019 seconds

A Study on the Coupled Torsional-Axial Vibration of Marine Propulsion Shafting System using the Energy Method

  • Jang, Min-Oh;Kim, Ue-Kan;Park, Yong-Nam;Lee, Young-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.482-492
    • /
    • 2004
  • Recently. the market trend for marine diesel engine has involved the lower running speeds. larger stroke/bore ratio and higher combustion pressure. Consequently, because of the flexible engine shafting system due to the larger mass. inertia and the more elasticity, the complicated coupled torsional-axial vibrations have occurred in the operating speed range. Also, the vibrations act as an excitation on the hull-structural vibration. To predict the vibration behavior with more accuracy and reliability. many studies have proposed the several kinds of method to calculate the stiffness matrix of crankshaft. However, most of these methods have a weak point to spend much time on three dimensional modeling and meshing work for crankshaft. Therefore. in this work. the stiffness matrix for the crankthrow is calculated using the energy method (Influence Coefficient Method, ICM) with the each mass having 6 degree of freedom. Its effectiveness is verified through the comparison with the stiffness matrix obtained by using the finite element method (FEM) and measured results for actual ships propulsion system.

Probabilistic Analysis of Coupled Axial and Torsional Vibration of Marine Diesel Propulsion Shafting System (선박디젤추진축계 종.비틂연성진동의 확률적 해석)

  • S.Y. Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.71-78
    • /
    • 1998
  • Recently, modern long-stroke diesel engines with small number of cylinders have been installed for energy saving and simpler maintenance. These kinds of low speed diesel engine produce large torsional vibration in the shafting, which induces the excessive vibratory stresses in the shafting and large propeller thrust variation. This thrust variation excites vibrations of the shafting and superstructure in the longitudinal direction. Up to now the deteriministic analysis of coupled vibration of marine shafting system has been performed. In this paper probabilistic analysis method of the marine diesel propulsion shafting system under coupled axial and torsional vibrations is presented. For the purpose of this work, the torsional and axial vibration excitations of engine and propeller are assumed to be probabilistic while the lateral excitation is assumed to be deterministic. The probabilistic analysis is based on a response surface and Monte-Carlo simulation. Numerical results based on the proposed method are compared with results calculated using the conventional deterministic analysis method. The results obtained make it clear that the proposed method gives a substantial increase in information about shafting behaviour as compared with the deterministic method.

  • PDF

A Study on the Forced Torsional Vibration of Engines Shafting Systems with Non-linear Elastic Couplings (비선형 탄성커플링을 갖는 기관축계의 비틀림강제진동에 관한 연구)

  • 박용남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.328-336
    • /
    • 1998
  • Marine reduction gears are usually used to increase the propulsion efficiency of propellers for ships powered by medium and small sized high speed diesel engines. Most of shaft systems adopt flexible couplings to absorb the transmitted vibratory torque from the engines to the reduction gears and to prevent the chattering phenomenon of reduction gears. However some elastic couplings show non-linear characteristics due to the variable torque transmitted from the main engines and the change of ambient temperature. In this study dynamic characteristics of flexible couplings sare investigated and their effects upon various vibratory conditions of propulsion systems are clarified. A calculation program of torsional vibration for the propulsion systems are clarified. A calculation program of Results of the program developed are compared with ones of the existing linear method and propulsion systems with the elastic couplings the transfer matrix method is adopted which is found to give satisfied results.

  • PDF

A study on the calculation of Synthesized torsional vibration for the marine diesel engine shafting by the modal analysis method (모오드 해석법에 의한 박용디젤기관 추진축계의 합성 비틀림 진동계산에 관한 연구)

  • 이강복;전효중;남청도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.159-169
    • /
    • 1985
  • The calculation of torsional vibration for marine diesel engine propulsion shafting is normally carried out by equalizing exciting energy to damping energy, or using the dynamic magnifier. But, with these methods, the vibration amplitudes are calculated only for resonance points and vibration amplitudes of other running speeds of engine are determined by the estimation. Recently, many energy-saving ships have been built and on these ships, two-stroke, supercharged, super-long stroke diesel engines which have a small number of cylinders are usually installed. In these cases, the first order critical-torsional vibrations of these engine shaftings appear ordinarily near the MCR speed and the stress amplitudes of their vibration skirts exceed the limit stress defined by the rules of classification society. To predict the above condition in the design stage, the synthesized vibration amplitudes of all orders which are summed up according to their phase angles must be calculated from the drawings of propulsion shaft systems. In this study, a theoretical method to fulfill the above calculation is derived and a computer program is developed according to the derived method. And a shafting system of two-stroke, super-long stroke diesel engine which was installed in a bulk carrier is analyzed with this method. The measured values of this engine shafting are compared with those of calculated results and they show a fairly good agreement.

  • PDF

Probabilistic Analysis of Forced-Damped Torsional Vibration of Marine Diesel Propulsion Shafting Systems (선박디젤추진축계 감쇠강제비틂진동의 확률적 해석)

  • S.Y. Ahn;M.B. Krakovski
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.157-166
    • /
    • 1994
  • Recently. the excessive diesel engine torsional excitation of typical energy saving ships has resulted in severe damages of the propeller shaft. Up to now the design and torsional vibration analysis of the marine diesel shafting system has been performed on the assumption that excitations are deterministic. But a diesel engine excitation varies randomly from cylinder to cylinder and from cycle to cycle, due to the imperfect operation of the engine components due to engine misfiring. consequently, a more rational analysis method for the propulsion shafting torsional vibration is required. In this paper probabilistic analysis method of the marine diesel engine shafting system under torsional vibration is presented. First a response surface representing maximum shear stresses in a shafting system is built. Then Monte Carlo simulation with subsequent approximation of the results by one of Pearson's curves, is performed. Some numerical results based on the proposed method are compared with t도 some numerical data available. They show acceptable agreements with the data.

  • PDF

A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System (기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

Measurement and Assessment of Whirling Vibration using Strain Gage in Small Propulsion Shafting System (소형추진축계에서 스트레인 게이지를 이용한 휘둘림 진동에 대한 계측 및 평가)

  • Kim, Jin-Hee;Kim, June-Sung;Kim, Tae-Un;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.527-532
    • /
    • 2011
  • Whirling vibration in severe cases may result in shaft cracking and typically gap sensors are utilized to confirm its values under the outside underwater of ship. The bending stress value causing whirling vibration on the propulsion shafting system of a 40-ton small vessel was verified by theoretical analysis and its vibration measurement. However, because of underwater condition, the accuracy for this measurement method is presumed low. In this study, the strain gauge basic principle and the bending stress calculation method are considered. The relationships are then applied for obtaining the whirling vibration of the 40-ton small vessel. As a result, a new method in estimation of whirling vibration is reached and suggested.

  • PDF

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

A study on the shaft alignment concerning long shaft for high speed vessel (초장축 고속선의 추진축계 배치에 관한 연구)

  • Lee, Jae-Ung;Oh, Joo-Won;Kim, Yong-Cheol;Lee, Sang-Su;Kim, Jeon-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.175-175
    • /
    • 2012
  • Proper shaft alignment is one of the most important actions during the design of the propulsion system. The stiffness of recently designed marine propulsion shafting has been increasing remarkably, whereas hull structures have become more likely to deform as a result of optimized design of the scantlings and the high tensile steel. Therefore, to obtain the optimum status in shafting alignment at the design stage, it is strongly recommended that the change of bearing reaction force depending on ballast/load condition, the bending moment force occurred by propeller thrust, elastic deformation of bearing occurred by vertical load of shaft mass and etc., should be considered. This paper dealing with introduction of shaft alignment concerning long shaft for high speed vessel and review its reliability evaluation theoretically.

  • PDF