• Title/Summary/Keyword: Propulsion control system

Search Result 689, Processing Time 0.042 seconds

Development and Testing of Next Generation Electric Vehicle Propulsion System (차세대전동차 추진시스템 개발 및 시험)

  • Lee, Jang-Mu;Lee, Han-Min;Kim, Gil-Dong;Kno, Ae-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2194-2195
    • /
    • 2011
  • The propulsion system of next generation electric vehicle is different from the structure and control methods compared with conventional induction motor vehicles by applying an interior permanent magnetic synchronous motor. Permanent magnet motor should be controlled by each individual motor, propulsion device have 1C1M structure by a single inverter to control a single motor.

  • PDF

A Study on the load control using electric inertia

  • Kim, Gil-Dong;Park, Hyun-Jun;Han, Young-Jae;Jang, Dong-Yuk;Jo, Jung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.128.1-128
    • /
    • 2001
  • A propulsion system apparatus is needed for a railroad vehicle to test and estimate propulsion performance. The electrical inertia simulator to facilitate the development and testing of propulsion systems, is presented in this paper. It is based on a vector-controlled Induction motor drive supplied from the AC mains through a double PWM converter that provides desirable features such as hi-directional power folw, nearly unity power factor and low harmonic factor at the Ac mains. A theoretical analysis is first presented, followed by a detailed simulation study to assess the overall system performance under dynamic conditions.

  • PDF

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kim T. Y.;Kno A. S.;Hwang K. C.;Choi J. M.;Kim J. B.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.298-302
    • /
    • 2004
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, UM(Intelligent Power module) is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

  • PDF

Development of IPM Propulsion System (Converter/Inverter) for AC Electric Vehicle (교류 전동차용 IPM 주 전력변환장치(Converter/Inverter) 개발)

  • Kim T.Y;Kno A.S;Hwang K.C;Choi J.M
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1437-1443
    • /
    • 2004
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM(Intelligent Power module) is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1.100kVA inverter with four 210kW traction motors.

  • PDF

Design Process of Liquid-Propellant Propulsion System for Space Launch Vehicle (우주발사체용 액체추진시스템 설계 프로세스)

  • Kim Hui-Tae;Han Sang-Yeop;Lee Han-Ju;Cho Kie-Joo;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.147-150
    • /
    • 2005
  • Space launch vehicles mainly use the liquid-propellant propulsion system which has easy thrust control ability and high specific impulse for that the payload like satellite and spacecraft should be entered into exact orbit. However, the liquid-propellant propulsion system is very difficult to develop because it is more complicate than the solid rocket propulsion system and demands very high technology. In space launch vehicle developing procedure the system design level is very important thing to reduce cost, shorten schedule, and improve the performance. The system design process was introduced for selecting the best liquid-propellant propulsion system on this paper.

  • PDF

Analysis & Design of Cooling System for Electric Propulsion System (전기 추진 시스템의 냉각시스템에 관한 분석 및 설계)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Kwak, Jun-Ho;Lee, Ji-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.596-602
    • /
    • 2008
  • The cooling system is one of the most concerning factor for the reliability of the electric propulsion ship. Generally, a drive system operation in higher temperature decreases the device's reliability and power efficiency. The management of power loss and temperature of switching devices is indispensable for the reliability of the power electric system. In this paper, the switching devices are molded by IGBT, and the propulsion system is consisted of MIIR(Motor with Inverter Internal to Rotor). The system composition interacts with each other to calculate the loss and temperature of device. The calculation result is used for modeling and designing of the control and monitoring system for the electric propulsion system.

Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics (함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발)

  • Lee, Hunseok;Son, Nayoung;Shim, Jaesoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1103-1109
    • /
    • 2021
  • ECS is a control device so that the warship can perform the mission stably by controlling and monitoring the entire propulsion system. As the recent provisions of the warship, it's propelling system is complicated than past, as the demand performance and mission of the warships are diverse. In accordance with the complicated propulsion system configuration, the demand for automatic control function of the ECS is increasing for convenient and stable propulsion system control for convenient and stable. As a result, verification of ECS stability and reliability is required. In this paper, we develop an interlocking signal simulator for verifying ECS control logic and communication protocol for warship with CODLOG propulsion systems. The simulator developed was implemented to simulate a signal of gas turbine, propulsion motors, diesel generator and 11 kinds of auxiliary equipment. The reliability of ECS was verified through the ECS communication program and the I/O signal static test with the simulator.

A Study of Remote Operation System for a ship Propulsion Thruster System (선박 추진제어시스템을 위한 원격운용장치 구현에 관한 연구)

  • Kim, Jong-Duk;Kim, Jeong-Hwan;Kim, Ok-Soo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2230-2236
    • /
    • 2010
  • Although recent years whole of shipbuilding market is seriously stagnant, an importance of ship fundamental technology issues has been increased. Accordingly diversity attempts to get various solutions are in progress by national support. Therefore, in this paper it deals with a remote operation control system which is a part of propulsion thruster system. it is proposed a propulsion thruster remote operation control system which is developed by localization technology as well as the methods not only to design hardware and software but to develop hardware and software.

Study of Micro Propulsion System Based on Thermal Transpiration (열적발산원리를 이용한 마이크로 추진장치에 대한 연구)

  • Jung, Sung-Chul;Shin, Kang-Chang;Kim, Youn-Ho;Kim, Hye-Hwan;Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.25-29
    • /
    • 2007
  • Minimization of conventional propulsion device has been studied for altitude control of micro satellite. We studied micro nozzle performance and found higher significant loss for a micro nozzle with smaller nozzle throat diameter. To overcome this loss, we proposed thermal transpiration based micro propulsion system. This new system has no moving parts and can control flow by temperature gradient, and this can be an option for potential new micro propulsion system.

  • PDF

Preliminary design of lunar lander ground test model (달착륙선 지상 시험 모델을 위한 추진시스템 기본 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Choi, Ji-Yong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.27-30
    • /
    • 2011
  • For the successful development of korean lunar lander, the ground test is required in order to verify performance of propulsion system, attitude control system, performance of landing device and etc. In order to develop the lunar lander ground test model, development of large size thruster and pressure regulated propulsion system is now in progress. In this paper, the results of 200N class monopropellant thruster development and propulsion system design will be presented.

  • PDF