• Title/Summary/Keyword: Proposed model

Search Result 33,271, Processing Time 0.053 seconds

Flexural behavior model for post-tensioned concrete members with unbonded tendons

  • Kim, Kang Su;Lee, Deuck Hang
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.241-258
    • /
    • 2012
  • The need for long-span members increases gradually in recent years, which makes issues not only on ultimate strength but also on excessive deflection of horizontal members important. In building structures, the post-tension methods with unbonded tendons are often used for long-span members to solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons, however, were mostly focused on the ultimate strength. For this reason, their approaches are either impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress, etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate strength. The applicability and accuracy of the proposed model were also verified by comparing with various types of test results including internally and externally post-tensioned members, a wide range of reinforcement ratios and different loading patterns. The comparison showed that the proposed model very accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed model well reflected the effect of various loading patterns, and also provided good estimation on the flexural behavior of excessively reinforced members that could often occur during reinforcing work.

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

Enhancing the Text Mining Process by Implementation of Average-Stochastic Gradient Descent Weight Dropped Long-Short Memory

  • Annaluri, Sreenivasa Rao;Attili, Venkata Ramana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.352-358
    • /
    • 2022
  • Text mining is an important process used for analyzing the data collected from different sources like videos, audio, social media, and so on. The tools like Natural Language Processing (NLP) are mostly used in real-time applications. In the earlier research, text mining approaches were implemented using long-short memory (LSTM) networks. In this paper, text mining is performed using average-stochastic gradient descent weight-dropped (AWD)-LSTM techniques to obtain better accuracy and performance. The proposed model is effectively demonstrated by considering the internet movie database (IMDB) reviews. To implement the proposed model Python language was used due to easy adaptability and flexibility while dealing with massive data sets/databases. From the results, it is seen that the proposed LSTM plus weight dropped plus embedding model demonstrated an accuracy of 88.36% as compared to the previous models of AWD LSTM as 85.64. This result proved to be far better when compared with the results obtained by just LSTM model (with 85.16%) accuracy. Finally, the loss function proved to decrease from 0.341 to 0.299 using the proposed model

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Lateral Resistance Analysis of Single Pile Using Strain Wedge Model in Sand (모래지반에서 쐐기모델을 이용한 단독말뚝의 수평저항력 해석)

  • Bae, Jong-Soon;Kim, Ji-Seong;Kim, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.39-46
    • /
    • 2010
  • The magnitude of the lateral resistance that resists the lateral movement of the pile is controlled by the amount of the pile movement and the strength and stiffness of soil. In this paper, we proposed an equation which produces the lateral resistance of the laterally loaded single pile using the strain wedge model of the soil deformation. The results of this equation is compared with results of model test, field test, p-y curve and other methods. It is found that the result of proposed equation is smaller than the result of model test. The results of loading test considerably coincide with those of proposed equation; however, a few of deviations are generated as the displacement of pile head increases. Moreover, coincidences exist between the results of the proposed equation and those of finite difference method.

Seismic retrofit of framed structures using a steel frame assembly

  • Michael Adane;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.857-865
    • /
    • 2023
  • This study aimed to develop a seismic retrofit technique using a steel frame which can be easily transported and assembled on site. This enables the retrofit steel frame to be easily attached to an existing structure minimizing the unwanted gap between the structure and the steel frame assembly. A one-story one-bay RC frame was tested with and without seismic retrofit using the proposed steel frame to verify the seismic retrofit effect of the proposed system, and an analysis model was developed in Opensees for seismic performance evaluation of a case study soft first-story model structure retrofitted with the developed steel frame assembly. Seismic performance of the model structure was also evaluated considering soil structure interaction effect. The experimental study confirmed that the proposed seismic retrofit system can be applied effectively to improve the seismic performance of framed structures. Time history analysis results of the model structure showed that the proposed steel frame assembly was effective in increasing the seismic load resisting capacity of the soft first-story structure. However more steel frame assemblies were required to satisfy the given performance limit state of the model structure located on weak soil due to the negative soil-structure interaction effect.

Three-Stage Strati ed Randomize Response Model (3단계 층화확률화응답모형)

  • Kim, Jong-Min;Chae, Seong-S.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.533-543
    • /
    • 2010
  • Asking sensitive questions by a direct survey method causes non-response bias and response bias. Non-response bias arises from interviewees refusal to respond and response bias arises from giving incorrect responses. To rectify these biases, Warner (1965) introduced a randomized response model which is an alternative survey method for socially undesirable or incriminating behavior questions. The randomized response model is a procedure for collecting the information on sensitive characteristics without exposing the identity of the respondent. Many survey researchers have proposed diverse variants of the Warner randomized response model and applied their model to collect the information of sensitive questions. Using an optimal allocation, we proposed three-stage stratified randomized response technique which is an extension of the Kim and Elam (2005) two-stage stratified randomized response technique. In this study, we showed that the estimator based on the proposed response model is more efficient than Kim and Elam (2005). But by adding one more survey step to the Kim and Elam (2005), our proposed model may have relatively less privacy protection compared to the Kim and Elam (2005) model.

Vibration characteristic analysis of differential floating mass transducer using electrical model for fully-implantable middle ear hearing devices (전기 모델에 의한 완전 이식형 인공중이용 차동 전자 트랜스듀서의 진동 특성 해석)

  • Kim, Min-Woo;Kim, Min-Kyu;Seong, Ki-Woong;Lim, Hyung-Gyu;Jung, Eui-Sung;Han, Ji-Hun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A differential floating mass transducer has been developed in Korea for fully implantable middle ear hearing devices (F-IMEHDs). In particular, the performance of a differential floating mass transducer (DFMT) is very important among the parts of the F-IMEHDs because the mechanical vibration generated by DFMT is delivered to the inner ear directly. In this paper, the electrical model is proposed to analyze the DFMT vibration characteristic using the mechanical model of the DFMT. The electrical model enables the simple analysis of DFMT vibration characteristics using a computer program. The proposed electrical model is simulated through PSpice as changing the values of passive elements in the electrical model. To verify the proposed model, the DFMT has been implemented on the basis of the simulated results and the experiment for vibration measurement has been carried out. Through the comparison, it is verified that the proposed model is useful to analyze the vibration characteristics of the DFMT.

A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model

  • Hashemi, Seyed Shaker;Sadeghi, Kabir;Javidi, Saeid;Malakooti, Mahmoud
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.285-294
    • /
    • 2019
  • In the present paper, the fiber theory has been employed to model the reinforced concrete (RC) deep beams (DBs) considering the reinforcing steel bar-concrete interaction. To simulate numerically the behavior of materials, the uniaxial materials' constitutive laws have been employed for reinforcements and concrete and the bond stress-slip between the reinforcing steel bars and surrounding concrete are taken into account. Because of the high sensitivity of DBs to shear deformations, the Timoshenko beam theory has been applied. The shear stress-strain (S-SS) relationship has been defined by the modified compression field theory (MCFT) model. By modeling about 300 RC panels and employing a produced numerical database, a study has been carried out to show the sensitivity of the MCFT model. This is performed based on the multiple linear regression (MLR) models. The results of this research also illustrate how different parameters such as characteristic compressive strength of concrete, yield strength of reinforcements and the percentages of reinforcements in different directions get involved in the shear behavior of RC panels without applying complex theories. Based on the results obtained from the analysis of the MCFT S-SS model, a relatively simplified numerical S-SS model has been proposed. Application of the proposed S-SS model in modeling and analyzing the considered samples indicates that there is a good agreement between the simulated and the experimental test results. The comparison between the proposed S-SS model and the MCFT model indicates that in addition to the advantage of better accuracy, the main advantage of the proposed method is simplicity in application.