• Title/Summary/Keyword: Proposed model

Search Result 33,547, Processing Time 0.07 seconds

Real Option Analysis to Value Government Risk Share Liability in BTO-a Projects (손익공유형 민간투자사업의 투자위험분담 가치 산정)

  • KU, Sukmo;LEE, Sunghoon;LEE, Seungjae
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.360-373
    • /
    • 2017
  • The BTO-a projects is the types, which has a demand risk among the type of PPP projects in Korea. When demand risk is realized, private investor encounters financial difficulties due to lower revenue than its expectation and the government may also have a problem in stable infrastructure operation. In this regards, the government has applied various risk sharing policies in response to demand risk. However, the amount of government's risk sharing is the government's contingent liabilities as a result of demand uncertainty, and it fails to be quantified by the conventional NPV method of expressing in the text of the concession agreement. The purpose of this study is to estimate the value of investment risk sharing by the government considering the demand risk in the profit sharing system (BTO-a) introduced in 2015 as one of the demand risk sharing policy. The investment risk sharing will take the form of options in finance. Private investors have the right to claim subsidies from the government when their revenue declines, while the government has the obligation to pay subsidies under certain conditions. In this study, we have established a methodology for estimating the value of investment risk sharing by using the Black - Scholes option pricing model and examined the appropriateness of the results through case studies. As a result of the analysis, the value of investment risk sharing is estimated to be 12 billion won, which is about 4% of the investment cost of the private investment. In other words, it can be seen that the government will invest 12 billion won in financial support by sharing the investment risk. The option value when assuming the traffic volume risk as a random variable from the case studies is derived as an average of 12.2 billion won and a standard deviation of 3.67 billion won. As a result of the cumulative distribution, the option value of the 90% probability interval will be determined within the range of 6.9 to 18.8 billion won. The method proposed in this study is expected to help government and private investors understand the better risk analysis and economic value of better for investment risk sharing under the uncertainty of future demand.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

A Performance Comparison of Super Resolution Model with Different Activation Functions (활성함수 변화에 따른 초해상화 모델 성능 비교)

  • Yoo, Youngjun;Kim, Daehee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.303-308
    • /
    • 2020
  • The ReLU(Rectified Linear Unit) function has been dominantly used as a standard activation function in most deep artificial neural network models since it was proposed. Later, Leaky ReLU, Swish, and Mish activation functions were presented to replace ReLU, which showed improved performance over existing ReLU function in image classification task. Therefore, we recognized the need to experiment with whether performance improvements could be achieved by replacing the RELU with other activation functions in the super resolution task. In this paper, the performance was compared by changing the activation functions in EDSR model, which showed stable performance in the super resolution task. As a result, in experiments conducted with changing the activation function of EDSR, when the resolution was converted to double, the existing activation function, ReLU, showed similar or higher performance than the other activation functions used in the experiment. When the resolution was converted to four times, Leaky ReLU and Swish function showed slightly improved performance over ReLU. PSNR and SSIM, which can quantitatively evaluate the quality of images, were able to identify average performance improvements of 0.06%, 0.05% when using Leaky ReLU, and average performance improvements of 0.06% and 0.03% when using Swish. When the resolution is converted to eight times, the Mish function shows a slight average performance improvement over the ReLU. Using Mish, PSNR and SSIM were able to identify an average of 0.06% and 0.02% performance improvement over the RELU. In conclusion, Leaky ReLU and Swish showed improved performance compared to ReLU for super resolution that converts resolution four times and Mish showed improved performance compared to ReLU for super resolution that converts resolution eight times. In future study, we should conduct comparative experiments to replace activation functions with Leaky ReLU, Swish and Mish to improve performance in other super resolution models.

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Lee, Hwan-Woo;Kim, Kwang-Yang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. As a result, the major variables to determine the size of distribution factors were girder spacing, overhang length and span length in case of external girders. For internal adjacent girders, the determinant factors were girder spacing, overhang length, span length and width of bridge. For internal girders, the factors were girder spacing, width of bridge and span length. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

Water Balance Projection Using Climate Change Scenarios in the Korean Peninsula (기후변화 시나리오를 활용한 미래 한반도 물수급 전망)

  • Kim, Cho-Rong;Kim, Young-Oh;Seo, Seung Beom;Choi, Su-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.807-819
    • /
    • 2013
  • This study proposes a new methodology for future water balance projection considering climate change by assigning a weight to each scenario instead of inputting future streamflows based on GCMs into a water balance model directly. K-nearest neighbor algorithm was employed to assign weights and streamflows in non-flood period (October to the following June) was selected as the criterion for assigning weights. GCM-driven precipitation was input to TANK model to simulate future streamflow scenarios and Quantile Mapping was applied to correct bias between GCM hindcast and historical data. Based on these bias-corrected streamflows, different weights were assigned to each streamflow scenarios to calculate water shortage for the projection periods; 2020s (2010~2039), 2050s (2040~2069), and 2080s (2070~2099). As a result by applying the proposed methodology to project water shortage over the Korean Peninsula, average water shortage for 2020s is projected to increase to 10~32% comparing to the basis (1967~2003). In addition, according to getting decreased in streamflows in non-flood period gradually by 2080s, average water shortage for 2080s is projected to increase up to 97% (516.5 million $m^3/yr$) as maximum comparing to the basis. While the existing research on climate change gives radical increase in future water shortage, the results projected by the weighting method shows conservative change. This study has significance in the applicability of water balance projection regarding climate change, keeping the existing framework of national water resources planning and this lessens the confusion for decision-makers in water sectors.

Story-based Information Retrieval (스토리 기반의 정보 검색 연구)

  • You, Eun-Soon;Park, Seung-Bo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.81-96
    • /
    • 2013
  • Video information retrieval has become a very important issue because of the explosive increase in video data from Web content development. Meanwhile, content-based video analysis using visual features has been the main source for video information retrieval and browsing. Content in video can be represented with content-based analysis techniques, which can extract various features from audio-visual data such as frames, shots, colors, texture, or shape. Moreover, similarity between videos can be measured through content-based analysis. However, a movie that is one of typical types of video data is organized by story as well as audio-visual data. This causes a semantic gap between significant information recognized by people and information resulting from content-based analysis, when content-based video analysis using only audio-visual data of low level is applied to information retrieval of movie. The reason for this semantic gap is that the story line for a movie is high level information, with relationships in the content that changes as the movie progresses. Information retrieval related to the story line of a movie cannot be executed by only content-based analysis techniques. A formal model is needed, which can determine relationships among movie contents, or track meaning changes, in order to accurately retrieve the story information. Recently, story-based video analysis techniques have emerged using a social network concept for story information retrieval. These approaches represent a story by using the relationships between characters in a movie, but these approaches have problems. First, they do not express dynamic changes in relationships between characters according to story development. Second, they miss profound information, such as emotions indicating the identities and psychological states of the characters. Emotion is essential to understanding a character's motivation, conflict, and resolution. Third, they do not take account of events and background that contribute to the story. As a result, this paper reviews the importance and weaknesses of previous video analysis methods ranging from content-based approaches to story analysis based on social network. Also, we suggest necessary elements, such as character, background, and events, based on narrative structures introduced in the literature. We extract characters' emotional words from the script of the movie Pretty Woman by using the hierarchical attribute of WordNet, which is an extensive English thesaurus. WordNet offers relationships between words (e.g., synonyms, hypernyms, hyponyms, antonyms). We present a method to visualize the emotional pattern of a character over time. Second, a character's inner nature must be predetermined in order to model a character arc that can depict the character's growth and development. To this end, we analyze the amount of the character's dialogue in the script and track the character's inner nature using social network concepts, such as in-degree (incoming links) and out-degree (outgoing links). Additionally, we propose a method that can track a character's inner nature by tracing indices such as degree, in-degree, and out-degree of the character network in a movie through its progression. Finally, the spatial background where characters meet and where events take place is an important element in the story. We take advantage of the movie script to extracting significant spatial background and suggest a scene map describing spatial arrangements and distances in the movie. Important places where main characters first meet or where they stay during long periods of time can be extracted through this scene map. In view of the aforementioned three elements (character, event, background), we extract a variety of information related to the story and evaluate the performance of the proposed method. We can track story information extracted over time and detect a change in the character's emotion or inner nature, spatial movement, and conflicts and resolutions in the story.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

Buyers' Trust in a Brand and Brand Loyalty in the business-to-business (산업재 시장에서 브랜드 신뢰와 브랜드 충성도에 관한 연구)

  • Han, Sang-Rin;Sung, Hyung-Suk
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.11a
    • /
    • pp.29-51
    • /
    • 2005
  • Brands are important in the consumer market. They are the interface between consumers and the company, consumers may develop loyalty to brands. also, The late development of industrial marketing explains the near absence of research on Brand Equity in business to business. With recent change, industrial companies have shifted from a production focus to a customer focus. industrial brand is fast developing. The basic purpose of this study is to investigate industrial brand trust and loyalty affecting the Result of business relationship between industrial buyers and suppliers. Factors hypothesized to influence trust in a brand include a number of brand characteristics, company characteristics and consumer-brand characteristics. This research presented a comprehensive constructive model consisting of components of industrial brand trust and loyalty, and then propose the research model base on prior researches and studies about relationships among components of industrial brand loyalty. Data were gathered from respondents who work in industrial buying center. For this study, Data were analyzed by SPSS 10.0 and AMOS 4.0. The results of this research analysis were as fallow. Industrial brand trust and loyalty were positively related with a number of industrial brand characteristics, supplier characteristics and buyer-brand characteristics. relationship commitment. This research newly proposed the concept of 'industrial brand trust and loyalty affecting the Result of business relationship between industrial buyers and suppliers'

  • PDF