• Title/Summary/Keyword: Proposed model

Search Result 33,547, Processing Time 0.061 seconds

Application Feasibility Study of Non-local Means Algorithm in a Miniaturized Vein Near-infrared Imaging System (정맥 관찰용 소형 근적외선 영상 시스템에서의 비지역적평균 알고리즘 적용 가능성 연구)

  • Hyun-Woo Jeong;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.679-684
    • /
    • 2023
  • Venous puncture is widely used to obtain blood samples for pathological examination. Because the invasive venipuncture method using a needle is repeatedly performed, the pain suffered by the patient increases, so our research team pre-developed a miniaturized near-infrared (NIR) imaging system in advance. To improve the image quality of the acquired NIR images, this study aims to model the non-local means (NLM) algorithm, which is well known to be efficient in noise reduction, and analyze its applicability in the system. The developed NIR imaging system is based on the principle that infrared rays pass through dichroic and long-pass filters and are detected by a CMOS sensor module. The proposed NLM algorithm is modeled based on the principle of replacing the pixel from which noise is to be removed with a value that reflects the distances between surrounding pixels. After acquiring an NIR image with a central wavelength of 850 nm, the NLM algorithm was applied to segment the final vein area through histogram equalization. As a result, the coefficient of variation of the NIR image of the vein using the NLM algorithm was 0.247 on average, which was an excellent result compared to conventional filtering methods. In addition, the dice similarity coefficient value of the NLM algorithm was improved by 62.91 and 9.40%, respectively, compared to the median filter and total variation methods. In conclusion, we demonstrated that the NLM algorithm can acquire accurate segmentation of veins acquired with a NIR imaging system.

Development of a Practical Algorithm for en-route distance calculation (항로거리 산출을 위한 실용 알고리즘 개발)

  • GeonHwan Park;HyeJin Hong;JaeWoo Park;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2022
  • The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.

Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis (데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석)

  • Sang-A Ahn;Jung-Hyun Lee;Hyuck-Jin Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.673-687
    • /
    • 2023
  • Exploratory data analysis is the process of observing and understanding data collected from various sources to identify their distributions and correlations through their structures and characterization. This process can be used to identify correlations among conditioning factors and select the most effective factors for analysis. This can help the assessment of landslide susceptibility, because landslides are usually triggered by multiple factors, and the impacts of these factors vary by region. This study compared two stages of exploratory data analysis to examine the impact of the data exploration procedure on the landslide prediction model's performance with respect to factor selection. Deep-learning-based landslide susceptibility analysis used either a combinations of selected factors or all 23 factors. During the data exploration phase, we used a Pearson correlation coefficient heat map and a histogram of random forest feature importance. We then assessed the accuracy of our deep-learning-based analysis of landslide susceptibility using a confusion matrix. Finally, a landslide susceptibility map was generated using the landslide susceptibility index derived from the proposed analysis. The analysis revealed that using all 23 factors resulted in low accuracy (55.90%), but using the 13 factors selected in one step of exploration improved the accuracy to 81.25%. This was further improved to 92.80% using only the nine conditioning factors selected during both steps of the data exploration. Therefore, exploratory data analysis selected the conditioning factors most suitable for landslide susceptibility analysis and thereby improving the performance of the analysis.

Work-Life Balance Policies in Germany and the Participation of Private Companies (독일의 일·가정 양립정책과 민간 기업의 참여)

  • Nam, Hyun-Joo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.729-736
    • /
    • 2023
  • Traditionally, Germany, a conservative welfare state, has pursued a male breadwinner model based on gender division of labor. For a long time, Germany tried to address low fertility through economic support centered on cash benefits, but it was not successful. In 2007, the German government began to shift the paradigm of family policy for work-life balance under the slogan of "A mix of time policy, income transfer, and infrastructure." When the issue of low birth rates emerged as a national concern in Germany, there was a growing social sentiment that not only the government but also private companies should contribute to increasing fertility by providing family-friendly personnel policies and working conditions. Private companies have been voluntarily improving family-friendly working conditions beyond legal obligations, aiming to secure personnel and prevent turnover. Germany's fertility rate is currently rising toward the European average level in 2023, which can be attributed to the government's work-life balance policies and the participation of private companies. In terms of improving work-life balance policies in Korea, it has been proposed to change the perception of the need for fathers to participate in child care, to make parental leave compulsory for men, to guarantee employment for women after childbirth, to expand child care facilities, and to revitalize family-friendly policies in companies.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.

A Study on the Use Intention of Online Charging Service for Prepaid Electronic Payment: Focused on the Moderating Effects and Transportation Card Users (선불 전자지급 수단의 온라인 충전 이용의도에 관한 연구: 교통카드사용자, 조절효과를 중심으로)

  • Seon-Ku Lee;Won-Boo Lee
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.177-200
    • /
    • 2021
  • Recently, the use of prepaid electronic payments such as electronic wallets, digital currency and prepaid points is gradually increasing. Prepaid electronic payments has the characteristic of being used after charging first. This study empirically investigated the factors affecting the intention to use online charging in order to help improve the service that require prepaid recharge by applying transformed TAM. Since there are not many previous studies for the intention to use online charging, we extract factors through preceding researches for electronic cash and mobile easy payment. Also we analyze the intention to use online charging for transportation card users, focusing on the moderating effects. As a result of the study, it was found that 'convenience', 'ubiquity', and 'self-efficacy' among the independent variables had a positive (+) effect on mediation variable 'perceived usefulness'. 'Perceived usefulness' was analyzed to have a significant influence on the dependent variable 'usage intention'. According to users' gender, internet usage time, internet shopping frequency, online charging frequency and transportation card usage type, the moderating effect was significant on 'perceived usefulness' and 'usage intention'. As an implication, it was suggested that service improvement and differentiated marketing are needed in direction of increasing the usefulness of services. Additional research directions were proposed for services such as e-wallets, prepaid points and digital currencies by adding other factors and moderate variables.

Optimization of Uneven Margin SVM to Solve Class Imbalance in Bankruptcy Prediction (비대칭 마진 SVM 최적화 모델을 이용한 기업부실 예측모형의 범주 불균형 문제 해결)

  • Sung Yim Jo;Myoung Jong Kim
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.23-40
    • /
    • 2022
  • Although Support Vector Machine(SVM) has been used in various fields such as bankruptcy prediction model, the hyperplane learned by SVM in class imbalance problem can be severely skewed toward minority class and has a negative impact on performance because the area of majority class is expanded while the area of minority class is invaded. This study proposed optimized uneven margin SVM(OPT-UMSVM) combining threshold moving or post scaling method with UMSVM to cope with the limitation of the traditional even margin SVM(EMSVM) in class imbalance problem. OPT-UMSVM readjusted the skewed hyperplane to the majority class and had better generation ability than EMSVM improving the sensitivity of minority class and calculating the optimized performance. To validate OPT-UMSVM, 10-fold cross validations were performed on five sub-datasets with different imbalance ratio values. Empirical results showed two main findings. First, UMSVM had a weak effect on improving the performance of EMSVM in balanced datasets, but it greatly outperformed EMSVM in severely imbalanced datasets. Second, compared to EMSVM and conventional UMSVM, OPT-UMSVM had better performance in both balanced and imbalanced datasets and showed a significant difference performance especially in severely imbalanced datasets.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Imaging Predictors of Survival in Patients with Single Small Hepatocellular Carcinoma Treated with Transarterial Chemoembolization

  • Chan Park;Jin Hyoung Kim;Pyeong Hwa Kim;So Yeon Kim;Dong Il Gwon;Hee Ho Chu;Minho Park;Joonho Hur;Jin Young Kim;Dong Joon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.213-224
    • /
    • 2021
  • Objective: Clinical outcomes of patients who undergo transarterial chemoembolization (TACE) for single small hepatocellular carcinoma (HCC) are not consistent, and may differ based on certain imaging findings. This retrospective study was aimed at determining the efficacy of pre-TACE CT or MR imaging findings in predicting survival outcomes in patients with small HCC upon being treated with TACE. Besides, the study proposed to build a risk prediction model for these patients. Materials and Methods: Altogether, 750 patients with functionally good hepatic reserve who received TACE as the first-line treatment for single small HCC between 2004 and 2014 were included in the study. These patients were randomly assigned into training (n = 525) and validation (n = 225) sets. Results: According to the results of a multivariable Cox analysis, three pre-TACE imaging findings (tumor margin, tumor location, enhancement pattern) and two clinical factors (age, serum albumin level) were selected and scored to create predictive models for overall, local tumor progression (LTP)-free, and progression-free survival in the training set. The median overall survival time in the validation set were 137.5 months, 76.1 months, and 44.0 months for low-, intermediate-, and high-risk groups, respectively (p < 0.001). Time-dependent receiver operating characteristic curves of the predictive models for overall, LTP-free, and progression-free survival applied to the validation cohort showed acceptable areas under the curve values (0.734, 0.802, and 0.775 for overall survival; 0.738, 0.789, and 0.791 for LTP-free survival; and 0.671, 0.733, and 0.694 for progression-free survival at 3, 5, and 10 years, respectively). Conclusion: Pre-TACE CT or MR imaging findings could predict survival outcomes in patients with small HCC upon treatment with TACE. Our predictive models including three imaging predictors could be helpful in prognostication, identification, and selection of suitable candidates for TACE in patients with single small HCC.

Brain Activation in Generating Hypothesis about Biological Phenomena and the Processing of Mental Arithmetic: An fMRI Study (생명 현상에 대한 과학적 가설 생성과 수리 연산에서 나타나는 두뇌 활성: fMRI 연구)

  • Kwon, Yong-Ju;Shin, Dong-Hoon;Lee, Jun-Ki;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.1
    • /
    • pp.93-104
    • /
    • 2007
  • The purpose of this study is to investigate brain activity both during the processing of a scientific hypothesis about biological phenomena and mental arithmetic using 3.0T fMRI at the KAIST. For this study, 16 healthy male subjects participated voluntarily. Each subject's functional brain images by performing a scientific hypothesis task and a mental arithmetic task for 684 seconds were measured. After the fMRI measuring, verbal reports were collected to ensure the reliability of brain image data. This data, which were found to be adequate based on the results of analyzing verbal reports, were all included in the statistical analysis. When the data were statistically analyzed using SPM2 software, the scientific hypothesis generating process was found to have independent brain network different from the mental arithmetic process. In the scientific hypothesis process, we can infer that there is the process of encoding semantic derived from the fusiform gyrus through question-situation analysis in the pre-frontal lobe. In the mental arithmetic process, the area combining pre-frontal and parietal lobes plays an important role, and the parietal lobe is considered to be involved in skillfulness. In addition, the scientific hypothesis process was found to be accompanied by scientific emotion. These results enabled the examination of the scientific hypothesis process from the cognitive neuroscience perspective, and may be used as basic materials for developing a learning program for scientific hypothesis generation. In addition, this program can be proposed as a model of scientific brain-based learning.