• 제목/요약/키워드: Proposed model

검색결과 33,271건 처리시간 0.048초

버텍스 영역을 이용한 STL에서의 3차원 디지털 워터마킹 (A 3D Watermarking on STL using Vertex domain)

  • 김기석;천인국
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(하)
    • /
    • pp.901-906
    • /
    • 2002
  • 본 논문은 신속조형(RP: rapid prototyping) 시스템에서 사용되며 3D 기하학적 형상 모델을 가지고 있는 STL(standard transform language)에 워터마크를 삽입하는 방법에 관한 연구이다. 제안된 알고리즘은 3D 형상 데이터의 왜곡이 전혀 없이 패싯(facet, mesh)의 버텍스(vertex) 영역에 워터마크를 삽입한다. 기존의 알고리즘으로 STL에 워터마크를 삽입할 경우, 패싯의 저장순서를 변경하는 단순한 공격으로도 워터마크가 제거된다. 제안된 알고리즘은 패싯의 저장 순서 변경과 같은 공격에 대한 강인성을 가질 뿐만 아니라, 비가시성(invisibility)도 충족한다. 제안된 알고리즘으로 STL 3D 형상에 워터마크를 삽입하고 추출하는, 실험 결과들은 3D 원형상을 전혀 왜곡하지 않고 워터마크의 삽입과 추출이 가능함을 보여준다.

  • PDF

동기페이저측정기를 활용한 전력계통 상태벡터 결정을 위한 병렬처리기법 (Parallel Processing Techniques to Determine State Vectors of a Power System using PMU)

  • 이기송;이찬주;조기선;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.72-74
    • /
    • 2000
  • This paper presents the linear model of the measurement system with Phasor Measurement Units (PMU's) and the parallel processing technique to determinate state vectors of a power system. The conventional model of the PMU measurement system is in a dilemma that it is not applicable to optimal PMU placements and it needs more PMU to apply this model. In order to improve this defect, in this paper, the extended linear model which adaptable to optimal PMU placements considering the feature of zero injection bus is proposed. Because the proposed model is expressed as over-determined measurement equation, the efficient algorithm is needed. This paper proposed the partitioning scheme and the process algorithm for parallel determinating state vectors of a power system efficiently. The performance of the proposed linear model and the parallel processing algorithm is evaluated with IEEE sample systems.

  • PDF

간척지 온실기초 나무말뚝의 인발저항력 예측을 위한 실내모형시험 결과 비교·분석 (Comparision Analysis of Model Test for Prediction of Uplift Resistance in the Reclaimed Land Greenhouse Foundation)

  • 송창섭;김명환;장웅희
    • 한국농공학회논문집
    • /
    • 제58권2호
    • /
    • pp.45-52
    • /
    • 2016
  • The object of this paper was to evaulate modified proposed design equation in model test result in order to estimate uplift-resistance of timber pile of reclaimed land greenhouse foundation. Uplift resistance result of model test was increased to according to increased of contact area. Uplift-resistance result of field test tend to lineary increased to according to increased of embedment depth and contact area. Results of field uplift-resistance was evaluate compare with modified proposed design equation results of model test and Effective stress method. As the Effective stress method tend to underestimate, modified proposed design equation results of model test tend to similar type. As the contact area increase, difference between field uplift-resistance results and modified proposed design equation results of model test was considered uplift-speed.

기계적 자극에 대한 휴지기를 포함한 교근의 근전도 신호 모델링 (Masseteric EMG Signal Modeling Including Silent Period After Mechanical Stimulation)

  • 김덕영;이상훈;이승우;김성환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.541-549
    • /
    • 2001
  • The term 'silent period(SP)' refers to a transitory, relative or absolute decrease electromyography(EMG) activity, evoked in the midst of an otherwise sustained contraction. Masseteric SP is elicited by a tap on the chin during isometric contraction of masseter muscle. In this paper, a new EMG signal generation model including SP in masseter muscle is proposed. This work is based on the anatomical structure of trigeminal nerve system that related on temporomandibular joint(TMJ) dysfunction. And it was verified by comparing the real EMG signals including SP in masseter muscle to the simulated signals by the proposed model. Through this studies, it was shown that SP has relation to variable neurophysiological phenomena. A proposed model is based on the control system theory and DSP(Digital Signal Processing) theory, and was simulated using MATLAB simulink. As a result, the proposed SP model generated EMG signals which are similar to real EMG signal including normal SP and an abnormal extended SP. This model can be applied to the diagnosis of TMJ dysfunction and can effectively explain the origin of extended SP.

  • PDF

An Interference Analysis Method with Site-Specific Path Loss Model for Wireless Personal Area Network

  • Moon, Hyun-Wook;Kwon, Se-Woong;Lee, Jong-Hyun;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.290-295
    • /
    • 2010
  • In this paper, an interference analysis method with a site-specific path loss model for a wireless personal area network (WPAN) is proposed. The site-specific path loss model is based on geometrical optics and geometric probability to consider both site-specific radio propagation characteristics and a closed-form expression to obtain the mean interference from which the uniformly distributed multiple interferers are derived. Therefore, the proposed interference analysis method can achieve more computational simplicity than the Monte-Carlo (MC) simulation, which uses the ray-tracing (RT) technique. In addition, better accuracy than the conventional interference analysis model that uses stochastic method can also be achieved. To evaluate the proposed method, a signal to the interference-noise ratio with a mean interference concept for uniformly distributed interferers is calculated and compared in two simulation scenarios. As a result, the proposed method produces not only better matched results with the MC simulation using the RT technique than the conventional interference analysis model, but also simpler and faster calculation, which is due to the site-specific path loss model and closed-form expression for interference calculation.

의미론적 제품 데이터 모델 기반 초기 선체 구조 CAD 시스템 개발 (On the Development of an initial Hull Structural CAD System based on the Semantic Product Data Model)

  • 이원준;이규열;노명일;권오환
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.157-169
    • /
    • 2002
  • In the initial stages of ship design, designers represent geometry, arrangement, and dimension of hull structures with 2D geometric primitives such as points, lines, arcs, and drawing symbols. However, these design information(‘2D geometric primitives’) defined in the drawing sheet require more intelligent translation processes by the designers in the next design stages. Thus, the loss of design semantics could be occurred and following design processes could be delayed. In the initial design stages, it is not easy to adopt commercial 3D CAD systems, which have been developed f3r being used in detail and production design stages, because the 3D CAD systems require detailed input for geometry definition. In this study, a semantic product model data structure was proposed, and an initial structural CAD system was developed based on the proposed data structure. Contents(‘product model data and design knowledges’) of the proposed data structure are filled with minimal input of the designers, and then 3D solid model and production material information can be automatically generated as occasion demands. Finally, the applicability of the proposed semantic product model data structure and the developed initial structural CAD system was verified through application to deadweight 300,000ton VLCC(Very Large Crude oil Carrier) product modeling procedure.

확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제2편: 강인 성능 평가 (Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 2: Robust Performance Assessment)

  • 옥승용;박원석
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.115-121
    • /
    • 2012
  • This paper, being the second in a two-part series, presents the robust performance of the proposed design method which can enhance a reliability-based design optimization(RBDO) under the uncertainties of probabilistic models. The robust performances of the solutions obtained by the proposed method, described in the Part 1, are investigated through the parametric studies. A 10-bar truss example is considered, and the uncertain parameters include the number of data observed, and the variations of applied loadings and allowable stresses. The numerical results show that the proposed method can produce a consistent result despite of the large variations in the parameters. Especially, even with the relatively small data set, the analysis results show that the exact probabilistic model can be successfully predicted with optimized design sections. This consistency of estimating appropriate probability model is also observed in the case of the variations of other parameters, which verifies the robustness of the proposed method.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (II) - Verification

  • 유영민
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.16-25
    • /
    • 2007
  • In a companion paper, a rational mechanical model to predict the entire behavior of point-loaded RC slender beams (a/d > 2.5) without shear reinforcement was developed. This paper presents the test results of 9 slender shear beams and compares them with analytical results performed by the proposed model. They are grouped by two parameters, which are shear span ratio and concrete strength. Three kinds of concrete strength the 26.5, 39.2, and 58.8 MPa were included as a major experimental parameter together with different shear span ratios ranging from 3 to 6 depending on the test series. Tests were set up as a traditional 3 point bending test. Various measurements were taken to monitor abrupt shear failure. Test results were not only compared with analytical results from the proposed model, but also other formulas, to consider the various aspects of shear failure such as kinematical conditions or shear capacity. Finally, a review of the proposed model is presented with respect to the shear transfer mechanisms and the effect of test parameters. Results show that several assumptions and proposals adopted in the proposed model are rational and reasonable.

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.