• 제목/요약/키워드: Proportional-integral controller

검색결과 408건 처리시간 0.031초

광도전성저항 안정화회로를 채택한 가변온도형 열선유속계의 출력특성에 관한 실험적 연구 (Experimental Study on Output Characteristics of a Variable Temperature Anemometer Adopting a Photoconductive Cell and Stabilizing Circuit)

  • 이신표
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1201-1208
    • /
    • 2001
  • Variable temperature anemometer(VTA) has greater sensitivity than a conventional constant temperature anemometer(CTA). In order to design a reliable VTA system, however, an elaborate photoconductive cell stabilizing circuit which plays a key role in setting wire-overheat ratio should be firstly developed. In this study, a stabilizing circuit which adopts proportional-integral analog controller was proposed and thoroughly tested for its accuracy and reproducibility. In contrast to the available circuit suggested by Takagi, the present circuit has characteristic that the resistance of a photoconductive cell increases with the increase of input voltage, which makes the current circuit very suitable for the design of VTA. Finally, VTA adopting stabilizing circuit was made and the enhanced sensitivity of the VTA was validated experimentally by comparing the calibration curves of VTA and CTA.

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

An Improved Control Method for a DFIG in a Wind Turbine under an Unbalanced Grid Voltage Condition

  • Lee, Sol-Bin;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.614-622
    • /
    • 2010
  • This paper presents a control method, which reduces the pulsating torque and DC voltage problems of a doubly fed induction generator (DFIG)-based wind turbine system. To reduce the torque and power ripple, a current control scheme consisting of a proportional integral (PI) controller is presented in a positive synchronously rotating reference frame, which is capable of providing precise current control for a rotor-side converter with separated positive and negative components. The power theory can reduce the oscillation of the DC-link voltage in the grid-side converter. In this paper, the generator model is examined, and simulation results are obtained with a 3 kW DFIG-based wind turbine system to verify the proposed control strategy.

자동 조도 조절 블라인드 시스템 설계 및 제작에 대한 연구 (A Study on the Design and Manufacturing of the Blind System with Auto-controlled Illuminance)

  • 장총민;김성걸
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.615-621
    • /
    • 2013
  • A blind system for window glass has been designed and manufactured as a CapStone Design project at Seoul National University of Science and Technology. This system automatically controls the interior illuminance to maintain a uniform temperature. The aim of this project was to support an air conditioning system and heating equipment to maintain a good indoor environment. Proportional integral differential (PID) control using cadmium sulfide (CdS) sensors was applied to control it. Polaroid film was attached to the new blind system to reflect sunlight. It was found that the system had the potential to reduce energy consumption and may be used with a building energy management system (BEMS).

Immune Algorithm Based Active PID Control for Structure Systems

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1823-1833
    • /
    • 2006
  • An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I-PID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect.

DSP 를 이용한 로봇의 그리퍼 제어장치의 개발 (Development of the Robot's Gripper Control System using DSP)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.

DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발 (Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

유도 전동기 구동을 위한 인버터의 특정고조파제거에 관한 연구 (A Study on the P.H.E of Inverter for Induction Motor Drive)

  • 전희종;김국진;정원석;최영한
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1989년도 추계학술발표회논문집
    • /
    • pp.51-58
    • /
    • 1989
  • In this paper, the technique of particular harmonics elimination in three-phase PWM Inver-ter output waveform and the method for speed control of a squirrel cage I.M. are introduces. The required switching patterns are determind on personal computer and the results are stored in look-up table in EPROM for controlling the switching of the Inverter devices. In this system, the microprocessor(Intel 8086)computes the actual Motor speed from the pulses generated in a Incremental Encoder, compares the actual speed with the reference speed. And the PI(Proportional-Integral) controller is used to adjust the frequency of the Inverter that feeds the Motor.

  • PDF

Attitude Stabilization of a Quad-Rotor UAV Using a Two-camera Vision System

  • Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.76-84
    • /
    • 2008
  • This paper is mainly concerned with the vision-based attitude stabilization of a quad-rotor UAV. The methods for attitude control rely on computing the roll and pitch angles of the vehicle from a two-camera vision system. One camera is attached to the body-fixed x-axis and the other to the body-fixed y-axis. The attitude computation for the quad-rotor UAV is performed by image processing consisting of Canny edge and Hough line detection. A proportional and integral controller is employed for the attitude hold autopilot. In this paper, the quad-rotor UAV is modeled by 6-DOF nonlinear equations of motion that includes rotor aerodynamics with blade element theory. The performance of the proposed method is evaluated through 3D environmental numerical simulations.

지능제어기법에 의한 충전제어 장치의 개발 (Development of Charging Control Device Using the Intelligent Control Method)

  • 김동완;황기현;이상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.116-119
    • /
    • 2001
  • In this research, we detect the charge state within $0.1{\sim}0.3[A]$ and develop the intelligent digital charge device by applying a fine pulse signal using PWM inverter and Proportional-Integral(PI) controller which uses micro -processor and intelligent technique. The ripple rate is within ${\pm}1%$, and the indicator error rate of full charge state is within ${\pm}1%$, and the voltage stability is within ${\pm}0.1[V]$, and the accuracy of voltage detect is 48[V] and ${\pm}0.5[V]$ in the reference of 100[A].

  • PDF