• Title/Summary/Keyword: Proportional-Integral-Derivative Control

Search Result 201, Processing Time 0.035 seconds

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Design of a Fuzzy P+ID controller for brushless DC motor speed control (BLDCM 의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2161-2163
    • /
    • 2002
  • The PID type controller has been widely used in industrial application doc to its simply control structure, ease of design and inexpensive cost. However control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (Fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuazy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controlled is better than that of the conventional controller.

  • PDF

Control of DC Servo Motor using PID Controller Self-Tuning (PID제어기의 자기동조를 이용한 직류 서보전동기의 위치제어)

  • Kim, Gwon-Sub;Lee, Oh-Keol;Kim, Sang-Hyo;Ko, Tai-Eun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1113-1115
    • /
    • 1996
  • The servo system requires faster and more accurate dynamic responses. A new technique for the position control of DC servo motors is presented in this paper. The proposed technique employs a Self Tuning Regulator Proportional Integral Derivative(STR PID) position control systems in order to improve the dynamic performance of a DC servo motor. Recursive -least -squares (RLS) method is used in order to estimate the STR PID coefficients, $K_P$, $K_I$, and $K_D$. In order to consider dynamics such as voltage, angular velocity, and rotor angle, the above method was applied position control system.

  • PDF

Analytical Method to Design Multiloop Control Systems via DCLR

  • Kim, Chang-Geun;Chun, Dae-Woong;Lee, Jie-Tae;Lee, Ki-Hong;Lee, Mon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.50.5-50
    • /
    • 2001
  • Although many advanced control strategies and concepts have been proposed recently, the most popular controller in the process industries is the PID controller because of its simplicity, easy implementation, and robustness. A multiloop PID controller design method using the general IMC tuning rule is presented in this paper. The IMC-PID controller is formed by combining the integral term designed by considering interactions between the individual loops with the proportional and derivative terms designed in circumstance neglecting the interactions. The multiloop PID controller designed by the proposed method can approximate the ideal multiloop controller throughout overall frequency range, and ...

  • PDF

A Study on the Active Control of Air Bearing (공기베어링의 능동제어에 관한 연구)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.

A Decision Support Systems Design for Process Control (공정통제용 의사결정지원 시스템)

  • 김정식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.39-51
    • /
    • 1987
  • This paper deals with the case analysis of second order processes under sampled-data. Proportional Integral-Derivative(PID) control, and development of Decision Support Systems(DSS) for such processes. In this paper three techniques were described for identifying the dynamics of closed loop stable processes. The first, called pulse testing is a frequency-domain method, which yields the frequency response diagram of an open loop process. The second is a time-domain method which yields the gain and time constants of the process model. The third technique is based on step response and gives the parameters of PID controllers. The development of DSS design programs consisting of above three techniques will provide very powerful tools in the microcomputer based process control.

  • PDF

Response Surface Tuning Methods in PID Control of the Magnetic Levitation Conveyor System (반응 표면법을 이용한 자기부상 반송장치의 PID 이득값 조정)

  • Bae, Kyu-Young;Kim, Chang-Hyun;Kim, Bong-Seup
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2609-2614
    • /
    • 2011
  • A proportional integral derivative (PID) controller is designed and applied to a magnetic levitation conveyor system to control the levitation gap length of the electromagnet constantly. The PID gain parameters are optimized by response surface methods (RSM). The controller is verified with the state-space model of electromagnetic suspension by MATLAB/SIMULINK program. And, the controller and the state-space model are also verified experimentally. Simulation and experimental results shows the effectiveness of the PID gain tuning by RSM as compared with the classical PID tuning.

  • PDF

A realization Fuzzy PI and Fuzzy PD Controller using a compensation Fuzzy Algorithms

  • Kim, Seung-Cheol;Choo, Yeon-Gyu;Kang, Shin-Chul;Lim, Young-Do;Park, Boo-Kwi;Lee, Ihn-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.4-101
    • /
    • 2002
  • I. Introduction ▶The PID(Proportional-Integral-Derivative) controller is widely used in the industry it can be implemented easily for a typical second order plant. ▶The parameters of PID controller should be adapted complicatedly if a plant is various or the load is present. ▶For solving the problem, many control techniques have been developed. ▶A major method is a hybrid Fuzzy-PID controller. But, in case of using this method, we can not obtain characteristic of rapidly response and not achieved compensation on disturbance. ▶Therefore, we will use compensator fuzzy controller a front Hybrid type fuzzy-PID controller...

  • PDF

Attitude Stabilization Performance Improvement of the Quadrotor Flying Robot (쿼드로터형 비행로봇의 자세 안정화 성능 개선)

  • Hwang, Jong-Hyon;Hwang, Sung-Pil;Hong, Sung-Kyung;Yoo, Min-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.608-611
    • /
    • 2012
  • This paper focuses on attitude stabilization performance improvement of the quadrotor flying robot. First, the dynamic model of quadrotor flying robot was estimated through PEM (Prediction Error Method) using experimental input/output data. And attitude stabilization performance was improved by increasing the generation frequency of PWM signal from 50 Hz to 500 Hz. Also, the controller is implemented using a standard PID (Proportional-Integral-Derivative) controller augmented with feedback on angular acceleration, allowed the gains to be significantly increased, yielding higher bandwidth. Improved attitude stabilization performance is verified by experiment.

A Tuning Algorithm for LQ-PID Controllers using the Combined Time - and Frequency-Domain Control Method

  • Kim, Chang-Hyun;Lee, Ju;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1244-1254
    • /
    • 2015
  • This paper proposes a new method for tuning a linear quadratic - proportional integral derivative controller for second order systems to simultaneously meet the time and frequency domain design specifications. The suitable loop-shape of the controlled system and the desired step response are considered as specifications in the time and frequency domains, respectively. The weighting factors, Q and R of the LQ controller are determined by the algebraic Riccati equation with respect to the limiting behavior and target function matching. Numerical examples show the effectiveness of the proposed LQ-PID tuning method