• 제목/요약/키워드: Proportional-Integral control

검색결과 499건 처리시간 0.025초

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

Enhancement of Particle Swarm Optimization by Stabilizing Particle Movement

  • Kim, Hyunseok;Chang, Seongju;Kang, Tae-Gyu
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1168-1171
    • /
    • 2013
  • We propose an improvement of particle swarm optimization (PSO) based on the stabilization of particle movement (PM). PSO uses a stochastic variable to avoid an unfortunate state in which every particle quickly settles into a unanimous, unchanging direction, which leads to overshoot around the optimum position, resulting in a slow convergence. This study shows that randomly located particles may converge at a fast speed and lower overshoot by using the proportional-integral-derivative approach, which is a widely used feedback control mechanism. A benchmark consisting of representative training datasets in the domains of function approximations and pattern recognitions is used to evaluate the performance of the proposed PSO. The final outcome confirms the improved performance of the PSO through facilitating the stabilization of PM.

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

無人 搬送車의 最適 操向制御 (Study on optimal steering control of an unmanned cart)

  • 김옥현;정성종
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.19-25
    • /
    • 1987
  • 본 논문에서는 이와 같은 형식의 무인 반송차(이하무인차로 줄임)의 최적조향 제어를 연구하였다. 단순한 비예제어(proportional control, P-control)만으로는 정 상편차(steady state error)를 없앨 수 없으므로 본 연구에서는 최적 비예 및 적분제 어(PROPORTIONAL-PLUSINTEGRAL CONTROL, pi-CONTROL) 방식을 채택하였다. 간단하고 실현이 쉬운 부최적제어(Suboptimal Control)도 고찰하였으며 최적제어의 경우와 비교 검토하였다. 또 한 무인차의 주요 설계변수가 제어성능에 미치는 영향을 정량적으로 비교 검토하여 그 설정기준을 고찰하였다.

UAV-UGV의 협업제어를 위한 향상된 Target Tracking에 관한 연구 (Study on the Improved Target Tracking for the Collaborative Control of the UAV-UGV)

  • 최재영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.450-456
    • /
    • 2013
  • This paper suggests the target tracking method improved for the collaboration of the quad rotor type UAV (Unmanned Aerial Vehicle) and omnidirectional Unmanned Ground Vehicle. If UAV shakes or UGV moves rapidly, the existing method generates a phenomenon that the tracking object loses the tracking target. To solve the problems, we propose an algorithm that can track continually when they lose the target. The proposed algorithm stores the vector of the landmark. And if the target was lost, the control signal was inputted so that the landmark could move continuously to the direction running out. Prior to the experiment, Proportional and integral control were used in 4 motors in order to calibrate the Heading value of the omnidirectional mobile robot. The landmark of UGV was recognized as the camera adhered to UAV and the target was traced through the proportional-integral-derivative control. Finally, the performance of the target tracking controller and proposed algorithm was evaluated through the experiment.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술 (Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller)

  • 구배영;원상철
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

오버슈트를 제한하는 실시간 적응형 PID 온도제어 (Real-time Adaptive PID Temperature Control that limits Overshoot)

  • 남진문
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.957-966
    • /
    • 2023
  • 본 논문에서는 새로운 실시간 적응형 PID 온도제어 기법을 제안한다. 제어대상을 표현하는 모델을 도입하여 오버슈트가 발생하지 않도록 하는 기법이다. 오버슈트의 원인이 되는 과도한 적분을 막기 위해 적분 제어량이 실시간으로 모델의 열손실을 추종하도록 적분 이득을 조정한다. 기본적으로 비례 제어는 오버슈트를 유발하지 않는다. PID 제어에서 오버슈트의 발생 원인은 적분에서 기인한다. 기존의 PID 제어는 적분이 비례 제어에 종속되고 개인이 상수로 고정되었다. 그 결과 서로에게 부정합되는 두 이득을 적용하면 과도한 오버슈트가 발생할 수 있었다. 그러나 제안하는 적응형 제어는 적분 제어량이 항상 열손실을 초과하지 않도록 능동적으로 오버슈트를 제거한다. 따라서 제안하는 기법에 따라 튜닝 실험이 필요 없는 적응형 PID 제어를 실현할 수 있다.

적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어 (Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller)

  • 허준영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.