• Title/Summary/Keyword: Proportional-Integral Control

Search Result 498, Processing Time 0.028 seconds

Predictive Direct Power Control in MMC-HVDC System (MMC-HVDC 시스템의 예측 기반 직접전력제어)

  • Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.403-407
    • /
    • 2018
  • This study proposes a predictive direct power control method in a modular multilevel converter (MMC) high-voltage direct-current (HVDC) system. The conventional proportional integral (PI)-based control method uses a cascaded connection and requires an optimal gain selection procedure and additional decoupling scheme. However, the proposed control method has a simple structure for active/reactive power control due to the direct power control scheme and exhibits a fast dynamic response by predicting the future status of system variables and considering time delay. The effectiveness of the proposed method is verified by simulation results.

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

A Study on Desired Trajectory Tracking Control by Hydraulic Shovel Arms (소형 유압 쇼벨암을 이용한 목표궤도추종제어에 관한 연구)

  • KANG, Soondong;HUH, Manjo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.78-89
    • /
    • 1996
  • This paper discusses automation of a small-scale hydraulic shovel and its trajectory control. To move an end-effect (grinder) along a desired trajectory, the controller uses PID(proportional-integral- defferential) control and internal pressure of hydraulic cylinder. To apply PID control in the present hydraulic system, the system model is derived physically and its system parameters are obtained by actual measurement. To show the effectiveness of the PID controller and propriety of system model, the computer simulations and experiments are performed. These results of the simulations and experiments indicate that the PID trajectory control of robotic deburring by hydraulic shovel is very effective.

  • PDF

Investigation of Control Theory on Pressure Drop Characteristics of Pneumatic Regulator for Gas Supply (공압 레귤레이터의 공급압력 강하 제어이론에 대한 고찰)

  • Cho, Nam-Kyung;Chung, Yong-Gahp;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.74-83
    • /
    • 2011
  • For launcher applications, different from other applications, very high flow rate is required which can lead to supply pressure drop against required setting pressure. The supply pressure decrease is closely related to regulator characteristics. In this paper, supply pressure offset is investigated considering regulators as kinds of control systems. Pressure offset of self-operated regulator is analyzed with sensitive parameter defined as the ratio of valve travel to pressure offset. It is shown that pressure offset of self-operating regulator can be improved by incorporating proportional and integral controls and they can be materialized with pilot regulator systems.

Door Control Unit Create Provision for PID Control DB (도어제어장치(DCU)의 PID Control DB 생성장치)

  • Kim, Jin-Heon;Kwon, Young-Hyun;Seong, Chang-Yong;Kwon, Min-Jeong;Lee, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3065-3072
    • /
    • 2011
  • PID Control Data Base creation device of DCU is safety operation technology of train door. For keeping the normal condition of door, measured value of regular condition and unusual(trouble detected) condition should be recorded by encoding. The door should be measured itself as this value is compared with standard vale. If it's condition of the door and for reaching the datum point and ot does self-diagnosis. This aim for Technical Realization is that carry out safety train operation by using the Estimation Data Base and protect before door-trouble.

  • PDF

Design and Control of a Six-degree of Freedom Autonomous Underwater Robot 'CHALAWAN'

  • Chatchanayuenyong, T.;Parnichkun, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1110-1115
    • /
    • 2004
  • Water covers two-thirds of the earth and has a great influence on the future existence of all human being. Thailand has extensive coastline and near shore water that contain vast biological and mineralogical resources. The rivers and canals can be found around the country especially in the Bangkok, which once called the Venice of the East. Autonomous underwater robot (AUR) will be soon a tool to help us better understand water resources and other environmental issues. This paper presents the design and basic control of a six-degree of freedom AUR "Chalawan", which was constructed to be used as a testbed for shallow. It is a simple low cost open-frame design, which can be modified easily to supports various research areas in the underwater environment. It was tested with a conventional proportional-integral-derivative (PID) controller. After fine-tuning of the controller gains, the results showed the controller's good performances. In the future, the dynamic model of the robot will be analyzed and identified. The advanced control algorithm will be implemented based on the obtained model.

  • PDF

EDFA Gain Stabilization via Disturbance Observer Techniques

  • Im, Yoon-Tae;Seo, Kwang-Bok;Song, Seong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2143-2146
    • /
    • 2003
  • We propose, for the first time to our knowledge, a novel gain-clamping method for EDFA in WDM Add/Drop networks by introducing a disturbance observer technique. The proposed gain-clamping control input consists of the nominal gain-clamping control such as PI(Proportional and Integral) control and the additional control input for the compensation of the effects caused by channel add/drops. The additional control input is designed using the wellknown disturbance observer technique and can be implemented very easily with general electric elements. We proved the superiority of the new technique over the previous methods by showing simulation result of minimized dips and spikes that appear in power profile of EDFA output.

  • PDF

Robust Control of Induction Motor with HTheory based on Loopshaping

  • Benderradji, Hadda;Chrifi-Alaoui, Larbi;Mahieddine-Mahmoud, Sofiane;Makouf, Abdessalam
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • The $H_{\infty}$ approach, adopted in this paper, is based on loop shaping using a normalized coprime factor combined with a field-oriented control to control induction motor. We develop two loops. The first one, the inner loop, controls the stator current by $H{\infty}$ controller in order to obtain good performance. The second loop, the outer one, guarantees stability and tracking performance of speed and rotor flux using a proportional integral controller. When the rotor flux cannot be measured, we introduce a flux observer to estimate the rotor flux. Simulation and experimental results are presented to validate the effectiveness and the good performance of this control technique.

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

An Improved Control Method for a DFIG in a Wind Turbine under an Unbalanced Grid Voltage Condition

  • Lee, Sol-Bin;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.614-622
    • /
    • 2010
  • This paper presents a control method, which reduces the pulsating torque and DC voltage problems of a doubly fed induction generator (DFIG)-based wind turbine system. To reduce the torque and power ripple, a current control scheme consisting of a proportional integral (PI) controller is presented in a positive synchronously rotating reference frame, which is capable of providing precise current control for a rotor-side converter with separated positive and negative components. The power theory can reduce the oscillation of the DC-link voltage in the grid-side converter. In this paper, the generator model is examined, and simulation results are obtained with a 3 kW DFIG-based wind turbine system to verify the proposed control strategy.