• Title/Summary/Keyword: Proportional power sharing

Search Result 12, Processing Time 0.019 seconds

Energy Management Method of DC Microgrids by Using Voltage Compensation Term (전압 변동 보상항을 이용한 직류 마이크로그리드의 에너지 관리 기법)

  • Ko, Byoung-Sun;Lee, Gi-Young;Kim, Seok-Woong;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.328-335
    • /
    • 2018
  • An energy management method of DC microgrids using voltage compensation term is proposed in this study. Droop control is often implemented to operate the DC microgrid. However, the droop control necessarily generates voltage variation. Energy flow is also difficult to control because the droop control mainly focuses on proportional load sharing. To solve these problems, the voltage compensation term based on the low-bandwidth communication is used to determine the operating band of the converter. Energy management and voltage variation minimization can be achieved by judging the operating band according to the magnitude of voltage compensation term. The validity of the proposed method is verified by simulation and experiments.

A Performance Improvement Scheme for a Wireless Internet Proxy Server Cluster (무선 인터넷 프록시 서버 클러스터 성능 개선)

  • Kwak, Hu-Keun;Chung, Kyu-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.415-426
    • /
    • 2005
  • Wireless internet, which becomes a hot social issue, has limitations due to the following characteristics, as different from wired internet. It has low bandwidth, frequent disconnection, low computing power, and small screen in user terminal. Also, it has technical issues to Improve in terms of user mobility, network protocol, security, and etc. Wireless internet server should be scalable to handle a large scale traffic due to rapidly growing users. In this paper, wireless internet proxy server clusters are used for the wireless Internet because their caching, distillation, and clustering functions are helpful to overcome the above limitations and needs. TranSend was proposed as a clustering based wireless internet proxy server but it has disadvantages; 1) its scalability is difficult to achieve because there is no systematic way to do it and 2) its structure is complex because of the inefficient communication structure among modules. In our former research, we proposed the All-in-one structure which can be scalable in a systematic way but it also has disadvantages; 1) data sharing among cache servers is not allowed and 2) its communication structure among modules is complex. In this paper, we proposed its improved scheme which has an efficient communication structure among modules and allows data to be shared among cache servers. We performed experiments using 16 PCs and experimental results show 54.86$\%$ and 4.70$\%$ performance improvement of the proposed system compared to TranSend and All-in-one system respectively Due to data sharing amount cache servers, the proposed scheme has an advantage of keeping a fixed size of the total cache memory regardless of cache server numbers. On the contrary, in All-in-one, the total cache memory size increases proportional to the number of cache servers since each cache server should keep all cache data, respectively.