• Title/Summary/Keyword: Proportional Resonant Current Controller

Search Result 50, Processing Time 0.021 seconds

A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller (비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구)

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • The effects of dead-time and offset error, which cause output current distortion in single-phase grid-connected inverters are investigated this paper. Offset error is typically generated by measuring phase current, including the voltage unbalance of analog devices and non-ideal characteristics in current measurement paths. Dead-time inevitably occurs during generation of the gate signal for controlling power semiconductor switches. Hence, the performance of the grid-connected inverter is significantly degraded because of the current ripples. The current and voltage, including ripple components on the synchronous reference frame and stationary reference frame, are analyzed in detail. An algorithm, which has the proportional resonant controller, is also proposed to reduce current ripple components in the synchronous PI current regulator. As a result, computational complexity of the proposed algorithm is greatly simplified, and the magnitude of the current ripples is significantly decreased. The simulation and experimental results are presented to verify the usefulness of the proposed current ripple reduction algorithm.

Control Strategy of MMC-HVDC under Unbalanced Grid Voltage Conditions

  • Zhang, Jianpo;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1499-1507
    • /
    • 2015
  • High voltage direct current transmission based on modular multilevel converter (MMC-HVDC) is one of the most promising power transmission technologies. In this study, the mathematical characteristics of MMC-HVDC are analyzed in a synchronous rotational reference frame. A hybrid current vector controller based on proportional integer plus resonant is used to uniformly control the DC and double-base frequency AC currents under unbalanced grid voltage conditions. A corresponding voltage dependent current order limiter is then designed to solve the overcurrent problems that may occur. Moreover, the circulating current sequence components are thoroughly examined and controlled using a developed circulating current suppressor. Simulation results verify the correctness and effectiveness of the proposed control schemes.

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

The Harmonic Current Mitigation of DFIG under Unbalanced Grid Voltage and Non-linear Load Conditions

  • Thinh, Quach Ngoc;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.83-84
    • /
    • 2011
  • This paper presents an analysis and a novel strategy for a doubly fed induction generator (DFIG) based wind energy conversion system under unbalanced grid voltage and non-linear load conditions. A proportional-resonant (PR) current controller is applied in both grid side converter (GSC) and rotor side converter (RSC). The RSC is controlled to mitigate the stator active power and the rotor current oscillations at double supply frequency under unbalanced grid voltage while the GSC is controlled to mitigate ripples in the dc-link voltage and compensate harmonic components of the network current. Simulation results using Psim simulation program are presented for a 2 MW DFIG to confirm the effectiveness of the proposed control strategy.

  • PDF

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter (단상 계통연계 인버터를 위한 개선된 고조파 보상법)

  • Khan, Reyyan Ahmad;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

Seamless Mode Transfer of Utility Interactive Inverters Based on Indirect Current Control

  • Lim, Kyungbae;Song, Injong;Choi, Jaeho;Yoo, Hyeong-Jun;Kim, Hak-Man
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.254-264
    • /
    • 2019
  • This paper proposes an indirect current control technique based on a proportional resonant (PR) approach for the seamless mode transfer of utility interactive inverters. Direct-current and voltage hybrid control methods have been used for inverter control under grid-connected and islanded modes. A large bandwidth can be selected due to the structure of single-loop control. However, this results in poor dynamic transients due to sudden changes of the controller during mode changes. Therefore, inverter control based on indirect current is proposed to improve the dynamic transients by consistently controlling the output voltage under all of the operation modes. A PR-based indirect current control topology is used in this study to maintain the load voltage quality under all of the modes. The design processes of the PR-based triple loop are analyzed in detail while considering the system stability and dynamic transients. The mode transfer techniques are described in detail for both sudden unintentional islanding and islanded mode voltage quality improvements. In addition, they are described using the proposed indirect control structure. The proposed method is verified by the PSiM simulations and laboratory-scale VDER-HILS experiments.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.