• Title/Summary/Keyword: Proportional Fairness Scheduling

Search Result 44, Processing Time 0.021 seconds

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

A Start-Time Based Fair Packet Scheduler Supporting Multiple Delay Bounds (다수 지연규격을 지원하는 시작시각 기반 공정패킷 스케줄러)

  • Kim Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.323-332
    • /
    • 2006
  • Fair packet scheduling algorithms supporting quality-of-services of real-time multimedia applications can be classified into the following two schemes in terms of the reference time used in calculating the timestamp of arriving packet; the Finish-Time (FT) and Start-Time (ST) schemes. The FT scheme, used in most schedulers, that has the property of an inversely rate-proportional latency is suitable to support various delay bounds because it can adjust the latency of a flow with raising the flow's reserved rate. However, the scheme may incur some bandwidth loss due to excess rate reservation. Meanwhile, although the ST scheme does not suffer from the bandwidth loss, it is hard to support multiple delay bounds because of its latency property relying on the number of flows. This paper is devoted to propose a ST scheme based scheduler to effectively support multiple delay bounds and analyze its performance comparing to the FT scheme based scheduler. The comparison results show that the proposed scheduler gives better utilization by up to 50%.

  • PDF

A Cumulative Fair Service Model in Single Server (단일서버에서의 누적적 공정서비스 모델)

  • Lee Ju-Hyun;Park Kyeong-Ho;Hwang Ho-Young;Min Sang-Lyul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.585-591
    • /
    • 2006
  • Generalized Processor Sharing(GPS) model provides instantaneous fair services to currently backlogged sessions. Since this fair service distributes server capacity to backlogged sessions in proportion to their weights, the fairness is only valid between the sessions serviced at the same time. From the long time view, however, this fair service provides different server capacity with one session or another, even if these sessions have the same weights. This paper proposes a cumulative fair service(CFS) model to provide fair server capacity to all sessions in the long time view. This model provides fair service in session Viewpoint because it distributes server capacity in proportion to the weights of sessions. The model and an algorithm referencing that model are analyzed for their properties and performances. Performance evaluations verify that the proposed algorithm provides proportional service capacity to sessions in the long time view.

Performance Evaluation of Inter-Sector Collaborative PF Schedulers for Multi-User MIMO Transmission Using Zero Forcing (영점 강제 다중 사용자 MIMO 전송 시 셀 간 정보 교환을 활용한 협력적 PF 스케줄러의 성능 평가)

  • Lee, Ji-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • Multi-user MIMO (Multiple-Input Multiple-Output) systems require collaborative PF schedulers to improve the performance of the log sum of average transmission rates. While the performance of single cell based conventional PF schedulers has been evaluated over various channel conditions, scheduling algorithms by multiple base stations which select multiple users over a given time frame and their performance require further investigations. In this paper, we apply a collaborative PF scheduler to the distributed multi-user MIMO system, which assigns radio resources to multiple users by exchanging user channel information from base stations located in three adjacent sectors. We further evaluate its performance in terms of the log sum of average transmission rates. The performance is compared to that of the full-search collaborative PF scheduler which searches over all possible combinations of user groups, and that of a parallel PF scheduler that determines users without channel information exchange among base stations. We show the log sum of average transmission rates of the collaborative PF scheduler outperforms that of the parallel PF scheduler in low percentile region. In addition, the collaborative PF scheduler exhibits a negligible performance degradation when compared to the full-search collaborative PF scheduler while a significant reduction of the computational complexity is achievable at the same time.