• Title/Summary/Keyword: Proportional Control

Search Result 1,620, Processing Time 0.026 seconds

Dynamic Characteristics of a Hydraulic Fishing Winch Simulator (유압식 어로 윈치 시뮬레이터의 동적 거동 특성)

  • LEE Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.330-336
    • /
    • 2004
  • To meet the increasing demand from various fishing fields for training of fishing equipment operators, a fishing winch simulator was designed to train maritime students in the correct and safe operation of hydraulic winches under various load conditions related to fishing operations. The aim of this study is to describe the basic dynamic characteristics of the newly developed hydraulic fishing winch simulator and particularly to analyze the mechanical responses produced on the winch operation controls. The winch simulator consists of two winch units, a computer control and data acquisition system, a control consol and other associated mechanisms. When one winch is in hauling mode, the other one will always be in loading mode. The revolution speed of the hauling winch was controlled by a proportional directional control valve, and the braking torque of the loading winch was controlled by a proportional pressure control valve. The simulation experiments indicated that the dynamic characteristics of the hauling winch followed the braking response characteristics of the loading winch. The tests also showed that the warp speed and tension linearly depend on the pressure differential across the motor of the loading winch controlled by operating the proportional pressure control valve during the hauling operation. The experience gained from various training courses showed that the fishing winch simulator was very realistic and it was valuable for training novice winch operators. The results of the winch simulation exercise were recorded and used to evaluate the training on the operation and handling of the winch system. From these test results, we concluded that the tension acting on the warp during hauling operations can successfully be simulated by controlling the pressure differential across the motor with step changes of the control input signal to the proportional pressure control valve of the loading winch.

Design of Intelligent Servocontroller for Proportional Flow Control Solenoid Valve with Large Capacity (지능형 대용량 비례유량제어밸브 서보컨트롤러 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As the technologies of electronic device have advanced these days, most of mechanical systems are designed with electronic control unit to take advantage of control parameter adaption to operating conditions and firmware flexibilities as well. On-board diagnosis, which detects the system malfunction and identifies potential source of error with its own diagnostic criteria, and fail-safe that can switch the mode of operation in view of recognized error characteristics enables easy maintenance and troubleshooting as well as system protection. This paper dealt with the development of diagnosis and fail-safe function for proportional flow control valve. All type of errors related to valve control system components are investigated and assigned to a specific hexadecimal codes. Cumulative error detection algorithm is applied in order for the sensitivity and reliability to be appropriate. Embedded simulator which runs simultaneously with system program provides the virtual error simulation environment for expeditious development of error detection algorithm. The diagnosis function was verified both with solenoid valve and embedded simulator test and it will enhance the valve control system monitoring function.

A Study of Optimal Design of the Proportional Load-Frequency Controller for a Self-service Power Station (주파수제어를 위한 비열제어기구의 최적설계에 관한 연구)

  • 장세훈;임화영
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.99-103
    • /
    • 1977
  • The object of this work is to study an optimal design problem of the proportional load-frequency controller for the single-control area power system. The selfservice power station is still a popular means as a power supplying source on ships or in a certain manufacturing area. The power system of this kind can be formulated as a single control-area system and it attracts a certain academic interest in controlling the system frequency under disturbances. In this paper, the single control-area system is mathematically formulated as a linear, time-invariant system in state-space under certain assumptions. The optimal proportional control law and the realization of the controller in closed loop-version is studied so that the final system designed can attain the system frequency to the nominal stationing value after the small load-disturbance. As in general cases of optimal design problems, the performance index is assumed to be quadratic in states and the control effort, and the infinite time control process is assumed in this work. The final control system realized depicts certain improvements in case study; in stability, transient responses and in steady-state frequency deviation, even though the steady state error did not attain the zero value.

  • PDF

A study on the design of the optimal nonlinear controller for single state feedback (단일상태 feedback을 가지는 계의 최적 비선형제어기 설계에 관한 연구)

  • 노용균;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.206-209
    • /
    • 1988
  • For feedback control of a linear dynamic system the optimum linear slace regulator (OLSR) can be implemented only if all state are available for feedback. This work demonstrates that when only the output state is available for feedback, a nonlinear controllers can be improved performance over that obtained by a proportional controller. This paper found the optimal control law by well-known dynamic programming and principles of optimality. Thus, performance of both proportional and nonlinear controllers is compared with performance of optimum linear state regulator.

  • PDF

Conceptual Design of Cutting System by Qualitative Reaoning (정성 추론에 의한 절삭 시스넴의 개념 설계)

  • 김성근;최영석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.531-535
    • /
    • 1996
  • Computer aided conceptual solution of engineering problems can be effectively implemented by qualitative reasoning based on a physical model. Qualitative reasoning needs modeling paradigm which provides intellignet control of modeling assumptions and robust inferences without quantitative information about the system. We developed reasoning method using new algebra of qualitative mathematics. The method is applied to a conceptual design scheme of anadaptive control system of cutting process. The method identifies differences between proportional and proportional-integral control scheme of cutting process. It is shown that unfeasible investment could be prevented in the early conceptual stage by the qualitative reasoning procedures proposed in this paper.

  • PDF

A P-Parallel Controller Design based on P-Control Ramp Response in Machine Tool (비례제어 경사응답에 기반한 공작기계의 비례-병렬 제어기 설계)

  • Gil, Hyeong-Gyeun;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.780-785
    • /
    • 2004
  • The work presented here deals with controller design by graphical method based on proportional control ramp response. The design aims at the improvement of transient response, disturbance rejection capability, steady-state error reduction with stability preservation. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

Pressure Control of Electro-Hydraulic Servo System by Two-Degree of Freedom Control Scheme (2자유도 제어기법에 의한 전자 유압 서보계의 압력제어)

  • 양경욱;오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.110-120
    • /
    • 1996
  • The purpose of this study is to build up the control scheme that promptly controls the pressure in a hydraulic cylinder having small control volume, using a PCV(proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is so large considering comparatively small volume of the hydraulic cylinder and the time delay of response of PCV is long. Considering the above-mentioned characteristics of the object pressure control system, in this study, a control system is designed with two degree of freedom scheme that is composed by adding a feed-forward control path to I-PD control system, and the reference model is used to decide control parameters. And through some experiments on FF-I-PD, the validity of this control method is confirmed.

  • PDF

Design and Field Test of an Optimal Power Control Algorithm for Base Stations in Long Term Evolution Networks

  • Zeng, Yuan;Xu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5328-5346
    • /
    • 2016
  • An optimal power control algorithm based on convex optimization is proposed for base stations in long term evolution networks. An objective function was formulated to maximize the proportional fairness of the networks. The optimal value of the objective function was obtained using convex optimization and distributed methods based on the path loss model between the base station and users. Field tests on live networks were conducted to evaluate the performance of the proposed algorithm. The experimental results verified that, in a multi-cell multi-user scenario, the proposed algorithm increases system throughputs, proportional fairness, and energy efficiency by 9, 1.31 and 20.2 %, respectively, compared to the conventional fixed power allocation method.

A Method for Estimating Fluid Force in Proportional Directional Control Valves with Spool (스풀형 비례 방향/유량제어밸브의 유체력 검증법)

  • Lee, I.Y.;Son, J.M.;Shin, H.B.;Son, J.H.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.109-115
    • /
    • 2010
  • In establishing a simulation program for hydraulic valves, it is always a big obstacle to incorporate correctly flow forces on valve body into the simulation program. This paper suggests a method to estimate flow forces on spool in proportional directional/flow control valves with spool structure. Furthermore, suggests a way to obtain simulation program for spool valves, in which flow force mechanism is fully reflected.

  • PDF

Anti-windup Integral-Proportional Controller for Variable-Speed Motor Drives

  • Park, Jong-Gyu;Chung, Jae-ho;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 2002
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and plant input is limited. An anti-windup integal-proportional(IP) controller is proposed for the variable-speed moter drives and it is experimentally applied to the speed control of a vector-controlled induction moter driven by a pulse width modulated (PWM) voltage source inverter (VSI). The consistency range of the IP controller is firstly derived and the intergal state is controlled to salisfy always the consistency range according to whether the the controller output is saturated or not. Although the operating condition like moter load or speed command is changed under the limited plant input, It is expermentally verified that the speed response has much improved performance, such as no overshoot and fast settling time, and the maximmum plant input is also effectively utilized.