• Title/Summary/Keyword: Property Interpolation

Search Result 88, Processing Time 0.019 seconds

Design of a CDBC Using Multirate Sampling (Multirate 샘플링을 이용한 CDBC의 설계)

  • 김진용;김성열;이금원
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.47-51
    • /
    • 2003
  • Due to the asymptotic property, deadbeat control which is well used in digital control system can not be applied to the continuous time system. But recently by use of the finite Laplace Transform to transfer function and establishment of some settling conditions, CDBC(Continuous time Deadbeat Control) is studied. For CDBC design, transfer function is constituted with delay elements and then order and interpolation conditions are derived. In other way, digital deadbeat controller is implemented and it's output is changed to continuous type by smoothing elements. In this paper multirate sampling is used and so inner controller is sampled faster than output feedback loop. And End order smoothing elements is placed to the output of digital deadbeat controller. By the multirate sampling overall output response is improved. The controller is impleneted as a serial integral compensator in the forward path and a local feedback compensator introduced into the outpute feedback loop. Matlab Simulink is used for simulation.

  • PDF

Wavelet-Galerkin Scheme of Inhomogeneous Electromagnetic Problems in the time Domain

  • 정영욱;이용민;최진일;나극환;강준길;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.550-563
    • /
    • 1999
  • A wavelet-Galerkin scheme based on the time-dependent Maxwell's equations is presented. Daubechies wavelet with two vanishing wavelet moments is expanded for basis function in spatial domain and Yee's leap-frog approach is applied. The shifted interpolation property of Daubechies wavelet family leads to the simplified formulations for inhomogeneous media without the additional matrices for the integral or material operator. The stability condition is formulated. The dispersion characteristics are analyzed and compared with those of finite difference time domain and multiresolution time domain methods. The analyses show the excellent trade-off between the regularity and the support width of the basis function. Although the basis function has only two vanishing wavelet moments, it is enough to provide negligible dispersive error in the numerical analysis and its compact support enables only several involved terms per nodes. The storage effectiveness, execution time reduction and accuracy of this scheme are demonstrated by calculating the resonant frequencies of the homogeneous and inhomogeneous cavities.

  • PDF

Spatial Analysis of Flood Rainfall Based on Kriging Technique in Nakdong River Basin (크리깅 기법을 이용한 낙동강 유역 홍수강우의 공간해석 연구)

  • Yoon, Kang-Hoon;Seo, Bong-Chul;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Most of hydrological analyses in the field of water resources are launched by gathering and analyzing rainfall data. Several methods have been developed to estimate areal rainfall from point rainfall data and to fill missing or ungaged data. Thiessen and Reciprocal Distance Squared(RDS) methods whose parameters are only dependent on inter-station distance are classical work in hydrology, but these techniques do not provide a continuous representation of the hydrologic process involved. In this study, kriging technique was applied to rainfall analysis in Nakdong river basin in order to complement the defects of these classical methods and to reflect spatial characteristics of regional rainfall. After spatial correlation and semi-variogram analyses were performed to perceive regional rainfall property, kriging analysis was performed to interpolate rainfall data for each grid Thus, these procedures were enable to estimate average rainfall of subbasins. In addition, poor region of rainfall observation was analyzed by spatial interpolation error for each grid and mean error for each subbasin.

A Study on Extraction of Vocal Tract Characteristic After Canceling the Vocal Cord Property Using the Line Spectrum Pairs (선형 스펙트럼쌍을 이용한 성문특성이 제거된 성도특성 추출법에 관한 연구)

  • 민소연;장경아;배명진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.665-670
    • /
    • 2002
  • The most common form of pre-emphasis is y(n)=s(n)-As(n-1), where A typically lies between 0.9 and 1.0 in voiced signal. Also, this value reflects the degree of pre-emphasis and equals R(1)/R(0) in conventional method. This paper proposes a new flattening method to compensate the weaked high frequency components that occur by vocal cord characteristic. We used interval information of LSP to estimate formant frequency, After obtaining the value of slope and inverse slope using linear interpolation among formant frequency, flattening process is followed. Experimental results show that the proposed method flattened the weaked high frequency components effectively. That is, we could improve the flattening characteristics by using interval information of LSP as flattening factor at the process that compensates weaked high frequency components.

Brachistochrone Minimum-Time Trajectory Control Using Neural Networks (신경회로망에 의한 Brachistochrone 최소시간 궤적제어)

  • Choi, Young-Kiu;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2775-2784
    • /
    • 2013
  • A bead is intended to reach a specified target point in the minimum-time when it travels along a certain curve on a vertical plane with the gravity. This is called the brachistochrone problem. Its minimum-time control input may be found using the calculus of variation. However, the accuracy of its minimum-time control input is not high since the solution of the control input is based on a table form of inverse relations for some complicated nonlinear equations. To enhance the accuracy, this paper employs the neural network to represent the inverse relation of the complicated nonlinear equations. The accurate minimum-time control is possible with the interpolation property of the neural network. For various final target points, we have found that the proposed method is superior to the conventional ones through the computer simulations.

Minimum-Time Trajectory Control of Ships Using Neural Networks (신경회로망을 이용한 선박의 최단시간 궤적제어)

  • Choi, Young-Kiu;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.117-126
    • /
    • 2013
  • A ship is intended to reach a specified target point in the minimum-time when it travels with a constant speed through a region of strong currents and its heading angle is the control variable. This is called the Zermelo's navigation problem. Its approximate solution for the minimum-time control may be found using the calculus of variation. However, the accuracy of its approximate solution is not high since the solution is based on a table form of inverse relations for some complicated nonlinear equations. To enhance the accuracy, this paper employs the neural network to represent the inverse relation of the complicated nonlinear equations. The accurate minimum-time control is possible with the interpolation property of the neural network. Through the computer simulation study we have found that the proposed method is superior to the conventional ones.

ABS(Attribute Based Surface) Modeling based on the Chordlength Domain (코드랭스 도메인 기법을 이용한 ABS 모델링)

  • Kim Jeong-Hwa;Park Hwa-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.189-196
    • /
    • 2006
  • The ABS method which is modeling the shape-design helps designers concentrate upon the design intuitively, using the modeling method based on the geometrical characteristics, the property information (a point. a curve. slopes. etc.). For the multi-sided patches, the ABS Modeling attempts the modeling with the uniform domain like a right triangle and a regular square. The mentioned method can reduce the speed of modeling but it can cause the difference from a designer's intention in the process of interpolation between the attributes for object modeling. Therefore, in this paper. we propose ABS modeling based on the Chordlength domain method to minimize such differences. The Chordlength, one of the methods generating irregular domain. is the technique transforming the domain in accordance with the length and form of attributes which a shape consists of. The Chordlength domain method is performed using MEL.

  • PDF

Time Synchronization Technique for GNSS Jamming Monitoring Network System (GNSS 재밍 신호 모니터링 네트워크 시스템을 위한 독립된 GNSS 수신기 간 시각 동기화 기법)

  • Jin, Gwon gyu;Song, Young jin;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2021
  • Global Navigation Satellite System (GNSS) receivers are intrinsically vulnerable to radio frequency jamming signals due to the fundamental property of radio navigation systems. A GNSS jamming monitoring system that is capable of jamming detection, classification and localization is essential for infrastructure for autonomous driving systems. For these 3 functionalities, a GNSS jamming monitoring network consisting of a multiple of low-cost GNSS receivers distributed in a certain area is needed, and the precise time synchronizaion between multiple independent GNSS receivers in the network is an essential element. This paper presents a precise time synchronization method based on the direct use of Time Difference of Arrival (TDOA) technique in signal domain. A block interpolation method is additionally incorporated into the method in order to maintain the precision of time synchronization even with the relatively low sampling rate of the received signals for computational efficiency. The feasibility of the proposed approach is verified in the numerical simualtions.