• 제목/요약/키워드: Propeller Design

검색결과 395건 처리시간 0.026초

트윈스케그 적용 대형 로팩스선의 선형개발 (Hull-Form Development of a Twin-Skeg Large Ro-Pax Ferry)

  • 이화준;장학수;홍춘범;안성목;전호환
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.491-497
    • /
    • 2012
  • A hull-form for a 32,000G/T class Ro-Pax ferry has developed in accordance with a need of ferry operators to reduce fuel oil consumption(FOC) due to the drastic increase in oil prices recently and strengthening of environmental rules and regulations such as CO2 emission. A twin-skeg type is applied as the hull-form in lieu of an open-shaft type in order to improve propulsion performance. In order to achieve this object, flow control devices are installed to reduce a propeller induced vibration which is a main reason to obstruct the application of twin-skeg type passenger vessels owing to an uncomfortable vibration level. Numerical simulation by using an in-house code and a commercial code (Fluent) has performed to find out an optimum design of the flow control devices and to check an improvement in cavity volume. Model tests in Samsung Ship Model Basin are carried out to evaluate propulsion performance with the developed twin-skeg type hull and a reference hull of open-shaft type. In conclusion, it is shown that the twin-skeg type hull is better than the open-shaft in FOC by around 7% and in cavity volume by 20% as well.

휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화 (Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm)

  • 홍충유;이진욱;박제웅
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

부가수 질량을 고려한 외팔판의 고유진동 해석 (Natural Frequency Analysis of Cantilever Plates with Added Mass)

  • 장현길;노인식;홍창호;이창섭
    • 대한조선학회논문집
    • /
    • 제50권1호
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

선박조종성능 추정을 위한 근사적 기법에 관한 연구 (Approximate Technique for Ship′s Manoeuvrabilily Prediction)

  • 이호영;신상성
    • 대한조선학회논문집
    • /
    • 제35권4호
    • /
    • pp.19-26
    • /
    • 1998
  • 본 논문은 선박의 조종성능을 추정하기 위하여 선체에 작용되는 유체력과 선체-프로펠라-타 상호 간섭 계수들에 대해 실험 및 반경험적 방법을 사용한 유사선 개념[1,2]을 도입하였다. 유사선 개념은 새로운 선박과 가장 유사한 선박의 기 실험된 데이타를 기본으로 채택한다. 유사선 개념을 적용하기 위해 기 실험된 선박에 대한 실험데이타가 존재해야 되며, 선체력의 변화를 평가하기 위한 반경험적방법이 채택되어야 하고, 기 실험된 선박의 데이타를 수정할 방법이 반드시 존재해야 된다. 유사선 개념을 근간으로, 만재흘수 상태의 실험결과를 이용하여 경하 및 하기만재흘수 상태에서의 선박조종성능을 추정하였고, 또한 유사선으로 기 실험된 선박을 선택하여 새로운 선박의 조종성능을 추정하였다. 본 논문의 계산 방법이 초기 설계단계에서 선박의 조종성능을 정확하게 추정할 수 있음을 확인하였다.

  • PDF

OKPO 300 진동 특성에 대한 실험적 연구 (Experimental Study of Vibration Characteristics of OKPO 300)

  • 황아롬
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.400-404
    • /
    • 2016
  • This paper presents experimental results for the vibration characteristics of the small unmanned underwater vehicle (UUV) OPKO 300, which was designed and manufactured by Daewoo ship and Marine Engineering Ltd. The autonomy of UUVs has led to an increase in their use in scientific, military, and commercial areas because their autonomy makes it possible for UUVs to be utilized instead of humans in hazardous missions such as mine countermeasure missions (MCM). Since it is impossible to use devices based on electromagnetic waves to gather information in an underwater environment, only sonar systems, which use sound waves, can be used in underwater environments, and their performance can strongly affect the autonomy of a UUV. Since a thruster system, which combines a motor and propeller in a single structure, is widely used as the propulsion system of a UUV and is mounted on the outside of a UUV’s stern, it can generate vibration, which can be transferred throughout the shell of the UUV from its stern to its bow. The transferred vibration can affect the performance of various sonar systems such as side-scan sonar or forward-looking sonar. Therefore, it is necessary to estimate the effect of the transferred vibration of the UUV on the sonar systems. Even if various numerical methods were used to analyze the vibration problem of a UUV, it would be hard to predict the vibration phenomena of a UUV at the initial design stage. In this work, an experimental study using OKPO 300 and an impact hammer was carried out to analyze the vibration feature of a small real UUV in the air. The frequency response function of the vibration based on the experimental results is presented.

선박디젤추진축계 감쇠강제비틂진동의 확률적 해석 (Probabilistic Analysis of Forced-Damped Torsional Vibration of Marine Diesel Propulsion Shafting Systems)

  • 안시영
    • 대한조선학회논문집
    • /
    • 제31권4호
    • /
    • pp.157-166
    • /
    • 1994
  • 최근의 배는 에너지절약을 도모하기 위하여 디이젤기관이 대구경 장행정 소수실린더 저속회전화 추세에 있기 때문에 기진력이 커지고 있다. 이와같은 결과로 추진축계에 과잉비틂진동응력이 작용하게 되어 선박운항에 지장을 줄 정도의 플로렐러축의 결손사고가 종종 발생하곤 한다. 현재까지의 추지축계에 대한 설계 및 비틂진동해석은 대부분 축계의 비틂기진력이 확정적이란 가정하에 수행되어 왔다. 이와 관련하여 축계 비틂기진력의 불규칙성의 영향을 고려한 확률적 비틂진동해석에 관한 연구가 이루워지고 있다. 본 연구에서는 기관기진력의 확률변수를 고려하여 추진축계의 강제 비틂진동의 확률적 해석에 대한 새로운 방법을 제시하였다. 확률적 해석에 응답면이론과 Monte Carlo 시뮤레이션 방법이 이용되었다. 본 해석방법의 타당성 여부를 확인하기 위하여 Nikolaidis 등이 사용한 시산대상선에 대한 일련의 수치계산을 수행하고, 그 결과를 Nikolaidis 등의 연구결과와 비교 검토하여 본 결과 비교적 잘 일치하고 있음을 미루어 보아 본 해석방법이 타당성이 확인되었다.

  • PDF

설문조사를 통한 우리나라 연안복합어선의 조업 실태 (Operating status of Korean coastal composite fishing boats by the questionnaire survey)

  • 황보규;장호영;김민선
    • 수산해양기술연구
    • /
    • 제54권4호
    • /
    • pp.324-332
    • /
    • 2018
  • We conducted a questionnaire survey to analyze the current status of the coastal composite fisheries, as well as the improvement point in designing a new type coastal composite fishing boat suitable for Korean fishing environments from April to August 2017. The questionnaire composed of 20 questions about the features of the coastal composite fishing boat and fishing work. The survey sites were selected to cover all parts of the country by considering the geographical position. The significance testing for the response results was accessed by ${\chi}^2$ test and ANOVA. The results revealed that more than half (59.1%) of the fishermen operated one day per voyage and operating alone topped with 22.5% in the number of crews, followed by 2 persons (20.3%) and 5 persons (22.1%). The navigation devices had a high rate of installation and GPS plotter ranked first in the devices. In addition, fish finder ranked first in fishing equipment, followed by net hauler. The most inconvenient work that they felt during the fishing operation was fish handing at 49.8% and other general fishing works like setting and hauling line, deck cleaning accounted for about 25%. The hardest work was the accident by ropes wrapped around propeller and the engine trouble came in second. The most inconvenient facilities to the present design of fishing boat was wheelhouse (76.7%), followed by fish hold (38.5%), and deck (35.1%). Furthermore, inconvenient points related to the movement of fishing gear, noise and vibration of engine, slippery deck and small fish hold exceeded 50%.

KCS용 벌브형 비대칭 타의 최적화에 대한 수치적 성능 연구 (Numerical Study on Optimization of Bulb Type Twisted Rudder for KCS)

  • 김명길;김문찬;신용진;강진구
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.419-426
    • /
    • 2018
  • Recently, in an effort to reduce the energy efficiency design index (EEDI), studies on energy saving devices (ESDs) have been conducted. In this study, we designed a post-device suitable for a KRISO container ship (KCS) using computational fluid dynamics (CFD). In order to increase the efficiency of the post-device, a twisted rudder was used, which has a proven performance (showing a 1.34% reduction in DHP compared to the bare hull at 24 knots) in previous research at Pusan National University. In addition, an increase in efficiency was expected by the use of a rudder bulb, including the discontinuous section of the twisted rudder and a divergent propeller cap to prevent the contraction of the wake. The optimization criterion was the case where the delivery power was the least compared with the bare hull. We analyzed the cause of the efficiency increase through an analysis of the self-propulsion factor. The case study for optimization was divided into 4 types (1. clearance of the bulb and cap, 2. shape of the bulb, 3. size of the bulb and cap, and 4. asymmetric bulb). Finally, with a clearance of 50 mm from the ship, a spherical bulb with the cap having an angle of $5^{\circ}$, and an asymmetric rudder bulb with a bulb diameter of 1.2HH/1.4H (horizontal/vertical) showed a 2.05% reduction in DHP compared to the bare hull at 24 knots. We will fabricate a post-device that will be optimized in the future and verify the performance of the post-device through model tests.

수심 변화에 따른 볼라드 당김 및 과부하 조건에서의 다중 포드 추진 쇄빙선박의 여유추력 추정에 대한 수치해석적 연구 (Study on Prediction of Net Thrust of Multi-Pod-Driven Ice-Breaking Vessel Under Bollard Pull and Overload Conditions According to the Change of Water Depth Using Computational Fluid Dynamics-Based Simulations)

  • 김진규;김형태;김희택;이희동
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.158-166
    • /
    • 2021
  • In this paper, a numerical analysis technique using a body force model is investigated to estimate the available net thrust of multi-pod-driven ice-breaking vessels under bollard pull and overload conditions. To employ the body force model in present flow simulations, drag and thrust components acting on the pod unit are calculated by using Propeller Open Water (POW) test data. The available net thrusts according to the direction of operation are evaluated in both bollard pull and overload conditions under deep water. The simulation results are compared with the model test data. The available net thrusts, calculated by the present analysis for ahead operating modes at 3~6 knots which are typical speeds of the target vessel in arctic field, are agreed well with the model test results. It is also found that the present result for astern operating mode appears approximately 6 % larger than the model test result. In addition, the available net thrusts are calculated under the both operating conditions accompanied by shallow water effects, and the main cause of the difference is studied. Based on the result of the present study, it is confirmed that the body force model can be applied to the performance evaluation of multi-pod propulsion system and the main engine selection in early design stage of the vessel.

휴대형 폐기능 검사기 'The Spirokit'의 제작 및 ATS 24/26파형을 통한 성능검증 (Production of Spirometer 'The Spirokit' and Performance Verification through ATS 24/26 Waveform)

  • 김병수;송준영;이명모
    • 대한물리치료과학회지
    • /
    • 제30권3호
    • /
    • pp.49-58
    • /
    • 2023
  • Background: This study aims to examine the useful- ness of the portable spirometer "The Spirokit" as a clinical diagnostic device through technology introduction, precision test, and correction. Design: Technical note Methods: "The Spirokit" was developed using a propeller-type flow rate and flow rate measurement method using infrared and light detection sensors. The level of agreement between the Pulmonary Waveform Generator and the measured values was checked to determine the precision of "The Spirokit", and the correction equation was included using the Pulmonary Waveform Generator software to correct the error range. The analysis was requested using the ATS 24/26 waveform recognized by the Ministry of Food and Drug Safety and the American Thoracic Society for the values of Forced Voluntary Capacity (FVC), Forced Expiratory Volume in 1second (FEV1), and Peak Expiratory Flow (PEF), which are used as major indicators for pulmonary function tests. All tests were repeated five times to derive an average value, and FVC and FEV1 presented accuracy and PEF presented accuracy as the result values. Results: FVC and FEV1 of 'The Spirokit' developed in this study showed accuracy within ± 3% of the error level in the ATS 24 waveform. The PEF value of 'The Spirokit' showed accuracy within the error level ± 12% of the ATS 26 waveform. Conclusion: Through the results of this study, the precision of 'The Spirokit' as a clinical diagnosis device was identified, and it was confirmed that it can be used as a portable pulmonary function test that can replace a spirometer.