• Title/Summary/Keyword: Propellants Distribution

Search Result 15, Processing Time 0.025 seconds

Prediction of Propellants Distribution of an Oxidizer Rich Preburner with Honeycomb Array of injectors (벌집형 분사기 배열을 갖는 산화제 과잉 예연소기에서의 추진제 분포 예측)

  • Moon, Il-Yoon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.614-615
    • /
    • 2010
  • The propellants distribution of an oxidizer rich preburner was predicted by a simplified physical approach. The Mixing head is composed of honeycomb array of 7 fuel injectors and 24 oxidizer injectors. The OF ratio of the mixing head is 15. As results, the OF ratio of the central area is about 9 and the OF ratio of the wall area is about 30.

  • PDF

A Study on the Shelf-Life Prediction of the Domestic Single Base Propellants Ammunition : Based on 105mm High Explosive Propellants (국내 단기추진제 탄약의 저장수명 예측에 관한 연구 : 105미리 고폭탄 추진체를 중심으로)

  • Choi, Myoungjin;Park, Hyungju;Yang, Jaekyung;Baek, Janghyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.36-42
    • /
    • 2014
  • Domestic 105mm HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product ($NO_2$, $NO_3$, and $HNO_3$) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants.

A study on prediction of propellant distribution of single swirl coaxial injector in gas generator (가스발생기용 단일 스월 동축형 분사기의 추진제 분포 예측에 관한 기법 연구)

  • Kim Jong-Gyu;Kim In-Tae;Han Yeoung-Min;Seol Woo-Seok;Lee Kwang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.205-209
    • /
    • 2004
  • The configuration and arrangement of injector in LRE gas generator and combustor have a great impact on combustion process and heat exchange because of affecting atomization, vaporization, mixing and chemical reaction. A relation between injector array and mixing distribution of propellants based on a physical approach was investigated in this study. Programming method of this relation is used to predict mixing distribution of propellants. Simplicity of physical approach and various assumptions make it reduce the accuracy and application of the results of present study. But, this method is very useful to predict the mixing distribution of full scale combustor due to difficulties in cold flow testing.

  • PDF

Development of large bore superconducting magnet for wastewater treatment application

  • Liu, Huiming;Xu, Dong;Shen, Fuzhi;Zhang, Hengcheng;Li, Laifeng
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.13-16
    • /
    • 2017
  • Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

Flow Analyses for the Uniform Distribution of Propellants at Manifolds of a Full-scale Gas Generator (가스발생기 연료 및 산화제 매니폴드 유동해석을 통한 유량균일성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1140-1147
    • /
    • 2009
  • Flow analyses have been performed to investigate the uniformity of propellant flow through the fuel and oxidizer manifolds of a full-scaled gas generator for a pump-fed liquid rocket engines. Injectors were simulated as porous medium layers having equivalent pressure drops. The uniformity of propellants has been analyzed for 3 fuel rings and 3 injector head configurations. The mixture ratio distribution at the exit of injectors has been estimated from the mass flow rates of fuel and oxidizer. The best configuration of fuel ring and injection head was selected through these flow analyses.

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.61-65
    • /
    • 2005
  • In HTPB/AP propellants, zirconium(Zr) addition to formulation was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

  • PDF

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-16
    • /
    • 2005
  • Zirconium(Zr) addition to formulation of HTPB/AP propellants, was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

Numerical Simulation of Two-Phase Flow field and Performance Prediction for Solid Rocket Motor Nozzle

  • Wahab, Shafqat;Kan, Xie;Yu, Liu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.275-282
    • /
    • 2008
  • This paper presents numerical investigation of multi-phase flow in solid rocket motor nozzle and effect of multi-phases on the performance prediction of the Solid Rocket Motor. Aluminized propellants are frequently used in solid rocket motors to increase specific impulse. An Eulerian-Lagrangian description has been used to analyze the motion of the micrometer sized and discrete phase that consist of the larger particulates present in the Solid Rocket Motor. Uniform particles diameters and Rosin-Rammler diameter distribution method has been used for the simulation of different burning of aluminum droplets generating aluminum oxide smokes. Roe-FDS scheme has been used to simulate the effects of the multi-phase flow. The results obtained show the sensitivity of this distribution to the nozzle flow dynamics, primarily at the nozzle inlet and exit. The analysis also provides effect of two phases on performance prediction of Solid Rocket Motor.

  • PDF

Failure distribution based crack propagation in solid propellant container: Comparison with experiment (고체추진기기의 고장분포 기반의 균열전파 모델: 실험과의 비교)

  • Yoh Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.47-52
    • /
    • 2005
  • We present a simple idea to simulate dynamic fracture and fragmentation of a propulsion system exposed to an extreme condition, such as a fire. The system consists of energetic materials confined in a steel cylinder. The strain failure model of the confinement is a modified Johnson-Cook model with a statistical failure distribution. By using the size distribution data of the fragments from the thermal explosion tests, the failure strain distribution can be empirically obtained and then entered into the model. The simulated fracture and fragment sizes are compared with the experimental records.

  • PDF

Numerical Simulations on Combustion Considering Propellant Droplet Atomization and Evaporation of 500 N Class Hydrogen Peroxide / Kerosene Rocket Engine (500 N급 과산화수소/케로신 로켓엔진의 추진제 액적 분무와 증발을 고려한 연소 수치해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, In-Sang;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.862-871
    • /
    • 2012
  • The numerical simulations on 500-N class rocket engine using 96% hydrogen peroxide and kerosene have been conducted, considering atomization, evaporation, mixing and combustion of its propellants. The grid containing 1/6 part of combustion chamber has been generated and it is assumed that 3 kinds of liquid-phase propellants (kerosene, hydrogen peroxide and water) were injected as hollow cone spray pattern, using Rosin-Rammler function for distribution of droplet diameter. For the calculation of combustion the eddy-dissipation model was applied. Owing to small size of combustion chamber and large specific heat / latent heat of hydrogen peroxide and water the propulsion characteristics were highly influenced by the size of droplet particles, and in this analysis the engine with droplet particles of 30 micron in average has shown the best propulsion performance.