• Title/Summary/Keyword: Propellant set

Search Result 42, Processing Time 0.026 seconds

PRELIMINARY STUDY ON AN AUTOMATIC PROPELLANT SYSTEM FOR IMPROVING TRACTIVE PERFORMANCE OF TRACTOR

  • Hong, Tiansheng;Shao, Yaojian
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.801-809
    • /
    • 1993
  • This paper presents the design of an automatic propellant system model in order to improving tractive performance of tractor. The theoretical basis of automatic control , the characteristics and function of the system, and the kinematic analysis are also discussed.

  • PDF

Thrust and Propellant Mixture Ratio Control of Open Type Liquid Propellant Rocket Engine (개방형 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lee, Jung-Ho;Oh, Seung-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1143-1148
    • /
    • 2007
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the motion of rocket. For operation of rocket in error boundary of the set-up trajectory, it is necessarily to control the thrust of LRE according to the required thrust profile and control the mixture ratio of propellants fed into combustor for the constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

Hot-Fire Test and Performance Evaluation of Small Liquid-Monopropellant Thrusters under a Vacuum Environment (단일액체추진제 소형 추력기의 진공환경 연소시험 및 성능특성 평가)

  • Kim Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.84-90
    • /
    • 2004
  • A performance evaluation is made in terms of thrust, impulse bit. and specific impulses for a set of mono-propellant hydrazine thrusters producing 0.95 lbf of nominal thrust at an inlet pressure of 350 psia. With a brief description on the hot-firing test configuration and procedures. a typical data obtained from steady-state firing mode is given directly showing the variational behavior of propellant supply pressure, mass flow rate, vacuum condition, and thrust. The performance features are successfully compared to the reference criteria of 1-lbf standard mono-propellant rocket engine. Additionally. a statistical inter-thruster treatment is concisely depicted for the justification of selected thrusters as a grouped member of flight model for spacecraft propulsion system.

Engineering Validation for Propellant Isolation Assembly of Korea Pathfinder Lunar Orbiter Part I: Numerical Analysis (시험용 달 궤도선의 추진제 공급부 설계 검증 Part I: 수치해석)

  • Kim, Sun-Hoon;Kim, Su-Kyum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.96-103
    • /
    • 2019
  • In this study, a comparison was conducted to verify the propellant isolation assembly of the Korea Pathfinder Lunar Orbiter (KPLO). An engineering validation model (EVM) is being developed to simulate the flow of the flight model. Three factors were selected for comparison: the total pressure drop during propellant isolation assembly, the waterhammer by driving thruster valve, and the orifice set up for flow control and damping the waterhammer. The analysis results are compared with EVM test results. In the future, backup data to confirm the design will be established.

A Study on the Performance Transient Phenomenon at the Interface of a Dual Thrust Rocket Motor with Two Kinds Propellant (이종 추진제를 적용한 이중추력 로켓모터 계면에서의 성능 과도 현상에 관한 연구)

  • Kim, Kyungmoo;Lee, Kiyeon;Kim, Jeongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • In this study, we developed a method to predict/analyze the performance of a dual thrust rocket motor that has 2 kinds propellant charged in axial direction. When transitioning from the booster to the suspender stage, a transient phenomenon related to performance occurred at the interface. The causes and characteristics of the transient phenomenon were investigated by comparing them with the results of the combustion test. It was confirmed that the performance transient phenomenon is sensitively generated not only by the shape design between the propellants with different properties of the propellant, but also by errors in manufacturing due to the propellant curing shrinkage.

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.

Fuel-rich Combustion with AP added Propellant in a Staged Hybrid Rocket Engine (다단 하이브리드 로켓에서 AP 첨가 추진제의 연료과농 연소)

  • Lee, Dongeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.576-584
    • /
    • 2016
  • In this study, AP added propellant has been proposed as a method of enhancing the low specific impulse performance found for staged hybrid rocket engine. Experimental tests were carried out to analyze and evaluate the effect of AP added propellant on specific impulse performance as well as fuel-rich combustion characteristics in a staged hybrid rocket engine. Upper limit of AP content in propellant was set to be 15 wt% to maintain the hybrid rocket engine advantages. As a result, 15 wt% AP added propellant showed 3% higher specific impulse performance compared to 0 wt% AP added propellant. Moreover, AP addition proved to offer less injected oxidizer mass flow, less O/F variation, and less combustion pressure while producing fuel-rich gas of the same combustion temperature. Future studies will carry out more combustion tests with metal additives to further enhance specific impulse.

Experimental investigation on No-Vent Fill (NVF) process using liquid Nitrogen

  • Kim, Youngcheol;Seo, Mansu;Yoo, Donggyu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2014
  • For a long-term space mission, filling process of cryogenic liquid propellant is operated on a space vehicle in space. A vent process during transfer and filling of cryogenic propellant is needed to maintain the fuel tank pressure at a safe level due to its volatile characteristic. It is possible that both liquid and vapor phases of the cryogenic propellant are released simultaneously to outer space when the vent process occurs under low gravity environment. As a result, the existing filling process with venting not only accompanies wasting liquid propellant, but also consumes extra fuel to compensate for the unexpected momentum originated from the vent process. No-Vent Fill (NVF) method, a filling procedure without a venting process of cryogenic liquid propellant, is an attractive technology to perform a long-term space mission. In this paper, the preliminary experimental results of the NVF process are described. The experimental set-up consists of a 9-liter cryogenic liquid receiver tank and a supply tank. Liquid nitrogen ($LN_2$) is used to simulate the behavior of cryogenic propellant. The whole situation in the receiver tank during NVF is monitored. The major experimental parameter in the experiment is the mass flow rate of the liquid nitrogen. The experimental results demonstrate that as the mass flow rate is increased, NVF process is conducted successfully. The quality and the inlet temperature of the injected $LN_2$ are affected by the mass flow rate. These parameters determine success of NVF.

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

An Ultrasonic Measurement Model to Predict a Reflected Signal from Non-Linear Burning Surface of Solid Propellants

  • Song, Sung-Jin;Kim, Hak-Joon;Oh, Hyun-Taek;Lee, Sang-Won;Song, Seung-Hyun;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.531-540
    • /
    • 2007
  • While determination of the solid propellant burning rates by ultrasound, it has been reported that the frequent data scatters were caused by two major factors; 1) variation in the acoustical properties, and 2) non-linear burning of a solid propellant sample under investigation. This work is carried out for the purpose of investigating the effect of non-linear burning of solid propellant samples. Specifically, we propose an ultrasonic measurement model that can predict the reflections from solid propellant surfaces with non-linear burning by the combination of two ingredients; 1) a pulse-echo ultrasonic measurement model for a planar, circular reflector imbedded in the second medium in an immersion set-up, and 2) an efficient model of non-linear burning surfaces with a number of small, planar circles. Then, we demonstrate the capability of the proposed measurement model by simulation of the surface echo signals from four different burning surfaces that have been generated by the combination of two factors; the base shape (flat or paraboloidal) and the surface roughness (perfectly smooth or randomly rough). From the simulation presented here, we can confirm the fact that the non-linear burning of the propellant can cause the waveform change of the burning surface echo and the corresponding spectrum variation.