• Title/Summary/Keyword: Propellant Position

Search Result 26, Processing Time 0.019 seconds

Study on the Propellant Position for the Decrease of the Differential Pressure in the Interior Ballistics of a Gun Propulsion System (강내탄도 내 차압 감소를 위한 추진제 위치 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2012
  • The position effect of the solid propellant in the combustion chamber on the decrease of the differential pressure has been investigated using the IBcode. Generally the metallic cartridge or CCC (combustible cartridge case) are used to load the propellant of the gun propulsion system. The position of the cartridge(propellant) is, therefore, a major factor for the interior ballistics in case the combustion chamber is larger than the cartridge. In this study, three different positions in the empty space of the chamber have been considered. As results, the case of the propellant located in the region near the base and breech has shown that the negative differential pressure and the difference between the breech pressure and the base pressure are much higher than those of the case of the propellant located in the center of the chamber. The case of the propellant in the center of the chamber is, therefore, more profitable to improve the performance of the interior ballistics.

Study on the Propellant Position for the Decrease of the Differential Pressure of the Interior Ballistics (강내탄도 내 차압 감소를 위한 추진제 위치 연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.236-241
    • /
    • 2011
  • The position effect of the solid propellant in the combustion chamber on the decrease of the differential pressure has been investigated using the IBcode. Generally the metallic cartridge or CCC (combustible cartridge case) as the propellant for the cannon has been loaded. The position of the propellant(cartridge) is, therefore, a major factor for the interior ballistics in case the combustion chamber is larger than the cartridge. In this study, three cases of the existence of empty space in the chamber has been considered. As results, the case of the propellant located in the region near the base and breech has shown that the negative differential pressure and the difference between the breech pressure and the base pressure are much higher than those of the case of the propellant located in the center of the chamber. The case of the propellant in the center of the chamber is, therefore, more profitable to improve the performance of the interior ballistics.

  • PDF

STUDY ON PROPERTIES OF INTERIOR BALLISTICS ACCORDING TO SOLID PROPELLANT POSITION IN CHAMBER (약실 내 추진제 위치에 따른 강내탄도 성능해석)

  • Jang, J.S.;Sung, H.G.;Lee, S.B.;Kim, I.J.;Roh, T.S.;Choi, D.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.479-486
    • /
    • 2010
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristics according to the position of the solid propellant in chamber has been investigated. In existing research, propellants have been evenly distributed in the chamber. In this study, however, several cases of the existence of empty space in the chamber at which the propellants are not evenly distributed are considered. The 7-perforated propellant configuration has been used in this research. The results have shown the change of performance of the interior ballistics according to solid propellant positions in the chamber.

  • PDF

STUDY ON PROPERTIES OF INTERIOR BALLISTICS ACCORDING TO SOLID PROPELLANT POSITION IN CHAMBER (약실 내 추진제 위치에 따른 강내탄도 성능해석)

  • Jang, J.S.;Sung, H.G.;Lee, S.B.;Roh, T.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • Using the numerical code for the interior ballistics, the performance of the interior ballistics with the characteristics according to the position of the solid propellant in chamber has been investigated. In existing research, propellants have been evenly distributed in the chamber. In this study, however, several cases of the existence of empty space in the chamber at which the propellants are not evenly distributed are considered. The 7-perforated propellant configuration has been used in this research. The results have shown the change of performance of the interior ballistics according to solid propellant positions in the chamber.

Experimental Study on Cryogenic Propellant Circulation using Gas-lift (Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험)

  • Kwon, Oh-Sung;Lee, Joong-Youp;Chung, Yong-Gahp
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

Thermal Response and Sensitivity Analysis of Satellite Propulsion Tank (인공위성 추진제 탱크의 열적 반응 및 민감도 해석)

  • Han Cho Young;Lee Kyun Ho;Yu Myoung Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.131-136
    • /
    • 2004
  • Thermal control of satellite propellant tank is achieved by patch heaters enabled by thermostat's behavior. It is important to attach the thermostat on the appropriate position of the propellant tank. However its position cannot be given with exact numerics because tank is spherical. Actually the position for thermostat is designated in relevant drawing approximately, therby, the engineer practices depending on his own experience and intuition. The sensitivity analysis for the position of thermostat is performed such that the influence on the thermal behavior and control of tank is examined quantatively. When assembling tank module, the reasonable performance on the thermal control is believed with possible human errors if the uncertainty in the position of thermostat is not quite large.

  • PDF

Development Study on the Prototype of Level Measurement System of Launch Vehicle Propellant Tanks (추진제 충전량 측정시스템 시제 개발 연구)

  • Shin, Dong-Sun;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.590-593
    • /
    • 2010
  • The processes of supplying propellants into propellant tanks play important roles during launch preparation of satellite launch vehicle. The total weight of launch vehicle greatly depends on the accuracy of filling quantity of propellant during launch preparation. Among propellants used for launch vehicles a cryogenic propellant such as liquid oxygen is widely adapted as an oxidizer for launch vehicles. Such cryogenic propellant usually resides in a propellant tank as two-phase fluid with liquid and gas, which needs an accurate level measurement system to detect the position of propellant surface precisely. In this paper the fabricating process of a level measurement system using capacitance type with three electrodes is analyzed. In addition, the change of electric signal according to the height of liquid is verified by testing the level measurement system under consideration. The results of tests shows as expected the linear trend of voltage according to the change of water height in a tank.

  • PDF

MEMS Application of Quenching Effect to a Novel Micro Solid Rocket

  • Ebisuzaki, Hideyo;Nagayama, Kunihito;Ikuta, Tatsuya;Takahashi, Koji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.601-604
    • /
    • 2004
  • Precise position and attitude control of pico-satellite requires huge number of impulses of the order of 10$^{-6}$ Ns. MEMS solid rocket array is a promising propulsion system but the higher degree of miniaturization causes unreliable operation mainly due to quenching. In order to breakthrough this situation, a novel design of solid micro-rocket is proposed, which generates tiny impulses repetitively from a single rocket not from array. This unique micro-rocket is based on the utilization of quenching, which causes propellant reaction to sustain only in a small area. A test chip of a micro solid propellant tank and micro heater array is fabricated and ignition test is conducted. Obtained results show the feasibility of this concept and future direction of this quenching-based propulsion is discussed.

  • PDF

Liquid Oxygen in Feeding Line during Propellant Filling and Holding (산화제 충진 및 대기 과정의 추진제 공급배관 내부 현상)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Lee, Joong-Youp
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.34-37
    • /
    • 2007
  • Propellant filling and holding test was carried out using liquid oxygen as a working fluid. The feeding line system has a filter at propellant tank outlet. Vaporization of liquid oxygen during holding after completion of filling and effect of vaporization to recirculation performance in this system was observed. Filling rate and pressure of tank ullage had the effect on state of liquid oxygen in feeding line. There was no geysering in feeding line during holding because of the position of filter.

  • PDF

Thermal Response Analysis of Satellite Propulsion Tank with Thermostat Location Variation (써모스탯 위치변화에 대한 인공위성 추진제 탱크의 열적 반응 해석)

  • Lee, Kyun-Ho;Han, Cho-Young;Choi, Joon-Min;Moon, Hong-Youl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.126-132
    • /
    • 2004
  • Thermal control of satellite propellant tank is achieved by patch heaters enabled by thermostat's behavior. It is important to attach the thermostat on the appropriate position of the propellant tank. However its position cannot be given with exact numerics because tank is spherical. In practice, the thermostat position is designated approximately in a relevant drawing approximately, thereby an engineer practices depending on his own experience and intuition. The sensitivity analysis for the position of thermostat is performed such that the influence on the thermal behavior and control of tank is examined quantatively. When assembling tank module, the reasonable performance on the thermal control is believed with possible human errors if the uncertainty in the position of thermostat is not quite large.