• Title/Summary/Keyword: Propellant Feeding

Search Result 62, Processing Time 0.016 seconds

Development of the Spherical Flange Used in a Cryogenic High Pressure Pipe (극저온 고압 배관용 구형 플랜지 개발)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Lee, Soo-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.64-69
    • /
    • 2011
  • The spherical flange was designed to apply to a cryogenic high pressure pipe of a liquid rocket engine. It is designed that the spherical flange is able to be assembled and kept airtight up to $2.5^{\circ}$ of the axial misalignment between the combined components. It increases the degree of freedom of the engine assembly. The spherical flange is composed of a ball and socket joint, a metal seal, spherical type bolts and washers. The prototype was verified by leak test at the room temperature and the cryogenic temperature. Additionally the strength test and the destructive test were performed at the room temperature.

Analysis of Dynamic Characteristics of Pneumatic Driving Solenoid Valve (공압구동용 솔레노이드밸브의 동특성 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.731-736
    • /
    • 2011
  • A pneumatic driving solenoid valve operates pneumatic control devices by opening/closing operating flow passage when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of pneumatic driving solenoid valve is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, drainage seat, rate of sealing diameter, volume of control cavity. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF