• Title/Summary/Keyword: Propagation speed

Search Result 1,001, Processing Time 0.023 seconds

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Dynamic O-D Trip estimation Using Real-time Traffic Data in congestion (혼잡 교통류 특성을 반영한 동적 O-D 통행량 예측 모형 개발)

  • Kim Yong-Hoon;Lee Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.1-12
    • /
    • 2006
  • In order to estimate a dynamic origin and destination demand between on and off-ramps in the freeways, a traffic flow theory can be used to calculate a link distribution proportion of traffics moving between them. We have developed a dynamic traffic estimation model based on the three-phase traffic theory (Kerner, 2004), which explains the complexity of traffic phenomena based on phase transitions among free-flow, synchronized flow and moving jam phases, and on their complex nonlinear spatiotemporal features. The developed model explains and estimates traffic congestion in terms of speed breakdown, phase transition and queue propagation. We have estimated the link, on and off-ramp volumes at every time interval by using traffic data collected from vehicle detection systems in Korea freeway sections. The analyzed results show that the developed model describes traffic flows adequately.

  • PDF

Long-Range Transported SO2 Inflow fromAsian Continent to Korea Peninsula Using OMI SO2 Data and HYSPLIT Backward Trajectory Calculations (OMI 이산화황자료와 HYSPLIT 역궤적 계산을 이용한 동북아지역의 장거리 수송되는 이산화황 유입량 산출)

  • Park, Junsung;Hong, Hyunkee;Choi, Wonei;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.743-754
    • /
    • 2014
  • In this present paper, we, for the first time, calculated $SO_2$ inflow from China to Korea peninsula based on OMI $SO_2$ products and HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) backward trajectory calculations. The major factors used to estimate $SO_2$ flux are long range transported $SO_2$ concentration, transport speed of air mass, and thickness of transported air mass layer. The mean and maximum $SO_2$ fluxes are estimated to be 0.81 and $2.11g{\cdot}m^{-2}{\cdot}h^{-1}$, respectively based on OMI products while, those of $SO_2$ fluxes are 0.50 and $1.18g{\cdot}m^{-2}{\cdot}h^{-1}$ respectively using insitu data obtained at the surface. For most cases, larger $SO_2$ inflow values were found at the surface than those estimated for the air mass layer which extends from surface up to 1.5 km. However, increased transport speed of air mass leads to the enhanced $SO_2$ flux at the altitude up to 1.5 km at the receptor sites. Additionally, we calculate uncertainties of $SO_2$ flux using error propagation method.

ESTIMATION OF INTRINSIC WAVE PARAMETERS AND MOMENTUM FLUXES OF MESOSPHERIC GRAVITY WAVES OVER KOREA PENINSULA USING ALL-SKY CAMERA AND FABRY-PEROT INTERFEROMETER (전천 카메라와 페브리-페로 간섭계 자료를 이용한 한반도 상공 중간권 중량파의 고유파동계수 및 운동량 플럭스 산출)

  • Chung, Jong-Kyun;Kim, Yong-Ha;Won, Young-In;Jee, Gun-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.327-338
    • /
    • 2007
  • We estimate the momentum fluxes of short-period gravity waves which are observed in the OI 557.7 nm nightglow emission with all-sky camera at Mt. Bohyun ($36.2^{\circ}\;N,\;128.9^{\circ}\;E$) in Korea. The intrinsic phase speed ($C_{int}$), the intrinsic period (${\tau}_{int}$), and vertical wavelength (${\lambda}_z$) are also deduced from the horizontal wavelength (${\lambda}_h$), observed period (${\tau}_{ob}$), propagation direction (${\phi}_{ob}$), observe phase speed (${\upsilon}_{ob}$) of the gravity wave on the all-sky images. The neutral winds to deduce intrinsic wave parameters are measured with Fabry-Perot interferometer on Shigaraki ($34.8^{\circ}\;N,\;13.1^{\circ}\;E$) in Japan. We selected 5-nights of observations during the period between July 2002 and December 2006 considering of the weather and instrument conditions in two observation sites. The mean values of intrinsic parameter of gravity waves are $({\tau}_{int})\;=\;12.9\;{\pm}\;6.1\;m/s,\;({\lambda}_z)\;=\;12.9\;{\pm}\;6.5,\;and\;(C_{int})\;=\;40.6\;{\pm}\;11.6\;min$. The mean value of calculated momentum fluxes for four nights besides of ${\lambda}_z\;<\;6\;km$ is $12.0\;{\pm}\;15.2\;m^2/s^2$. It is needed the long-term coherent observation to obtain typical values of momentum fluxes of the mesospheric gravity waves using all-sky camera and the neutral wind measurements.

A Study on the Recent Trends and Prospects of Maritime Satellite Communication Systems (해사위성통신시스템의 현황과 전망)

  • 조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.2 no.1
    • /
    • pp.20-28
    • /
    • 1977
  • The shipping business which consistutes main stream of foreign trades in the world desires more larger and higher speed ships to convey a large amount of cargo at a time rapidly and safely. They also want to introduce new techniques into transportation system so to meet the rapid growing demand of maritime mobile communications with the improvement of efficiency of radio apparatus and reduction of the hard labors of radio operators mechanization and modernization of radio apparatus is necessary. Now HF band is used mainly for communications between maritime mobile stations and coast stations but the quality of received signal is not so good and the coverage is not sufficient by the condition of propagation of waves. There is also limitation of channel capacity in HF band. So to cope with or improve of these defects and meet the demands of modern maritime communication it is essential to introduce maritime satellite communication system in this field. By using the maritime satellite we can establish high quality communication circuits as maritime Telex, Faximile, high speed data transmission line and can expand coverages. Therefore industrial rationalization of marine transportation is possible with the reduction of painful labors of radio operators by improving safety and promoting of efficiency of movement of ships and freights. Obviously it is prospected that the introduction of maritime satellite communication system will bring a rapid promotion of its usuage in maritime mobile communication field and also anticipated that maritime satellite communication system will be a main current in maritime mobile communication field over the world in the near future with moderated cost of transmission links as in the case of INTELSAT in the past 10 years after its first launching.

  • PDF

The viterbi decoder implementation with efficient structure for real-time Coded Orthogonal Frequency Division Multiplexing (실시간 COFDM시스템을 위한 효율적인 구조를 갖는 비터비 디코더 설계)

  • Hwang Jong-Hee;Lee Seung-Yerl;Kim Dong-Sun;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.61-74
    • /
    • 2005
  • Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.

2003 Asia Pacific Microwave Conference (2003아시아 태평양 마이크로파 학술회의)

  • 김동일;이혁재;박동철;명로훈;윤상원;조영기;남상욱;윤영중;이해영
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2004.01a
    • /
    • pp.1-226
    • /
    • 2004
  • I. Title APMC'03(2003 Asia Pacific Microwave Conference) II. Objecuve $\bigcirc$Investigation of new trend in the field of microwave engineering $\bigcirc$Establishment of R&D track for wireless and high speed communication III. Scope of investigation $\bigcirc$R&D trend in various microwave engineering areas-Solid state Devices and circuits-Electromagnetic Field Theory-EMI&EMC-Phased & Active Array Antennas-Scattering & Propagation $\bigcirc$Discussions with various technical topics-New research & development topics-Establishment of wireless & high speed communications IV. Results During the conference, very active academic exchange were possible between Korean and foreign microwave engineering scholars. It was also possible to introduce the level and activities of Korean microwave engineering researches to foreign countries. Also, it was good opportunity to contact foreign scholars and researchers for valuable academic discussion using technical paper presentations and inquiries.

  • PDF

Implementation of LDPC Decoder using High-speed Algorithms in Standard of Wireless LAN (무선 랜 규격에서의 고속 알고리즘을 이용한 LDPC 복호기 구현)

  • Kim, Chul-Seung;Kim, Min-Hyuk;Park, Tae-Doo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2783-2790
    • /
    • 2010
  • In this paper, we first review LDPC codes in general and a belief propagation algorithm that works in logarithm domain. LDPC codes, which is chosen 802.11n for wireless local access network(WLAN) standard, require a large number of computation due to large size of coded block and iteration. Therefore, we presented three kinds of low computational algorithms for LDPC codes. First, sequential decoding with partial group is proposed. It has the same H/W complexity, and fewer number of iterations are required with the same performance in comparison with conventional decoder algorithm. Secondly, we have apply early stop algorithm. This method reduces number of unnecessary iterations. Third, early detection method for reducing the computational complexity is proposed. Using a confidence criterion, some bit nodes and check node edges are detected early on during decoding. Through the simulation, we knew that the iteration number are reduced by half using subset algorithm and early stop algorithm is reduced more than one iteration and computational complexity of early detected method is about 30% offs in case of check node update, 94% offs in case of check node update compared to conventional scheme. The LDPC decoder have been implemented in Xilinx System Generator and targeted to a Xilinx Virtx5-xc5vlx155t FPGA. When three algorithms are used, amount of device is about 45% off and the decoding speed is about two times faster than convectional scheme.

Parallel Flood Inundation Analysis using MPI Technique (MPI 기법을 이용한 병렬 홍수침수해석)

  • Park, Jae Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1051-1060
    • /
    • 2014
  • This study is attempted to realize an improved computation performance by combining the MPI (Message Passing Interface) Technique, a standard model of the parallel programming in the distributed memory environment, with the DHM(Diffusion Hydrodynamic Model), a inundation analysis model. With parallelizing inundation model, it compared with the existing calculation method about the results of applications to complicate and required long computing time problems. In addition, it attempted to prove the capability to estimate inundation extent, depth and speed-up computing time due to the flooding in protected lowlands and to validate the applicability of the parallel model to the actual flooding analysis by simulating based on various inundation scenarios. To verify the model developed in this study, it was applied to a hypothetical two-dimensional protected land and a real flooding case, and then actually verified the applicability of this model. As a result of this application, this model shows that the improvement effectiveness of calculation time is better up to the maximum of about 41% to 48% in using multi cores than a single core based on the same accuracy. The flood analysis model using the parallel technique in this study can be used for calculating flooding water depth, flooding areas, propagation speed of flooding waves, etc. with a shorter runtime with applying multi cores, and is expected to be actually used for promptly predicting real time flood forecasting and for drawing flood risk maps etc.

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.