• Title/Summary/Keyword: Propagation Speed

Search Result 998, Processing Time 0.032 seconds

A Experimental Study on Train Speed and Wave Propagation Speed of Contact Wire according to the Speed-up (속도향상에 따른 열차속도와 전차선 파동전파속도에 대한 실험적 연구)

  • Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1820-1823
    • /
    • 2013
  • An overhead catenary system is the one of the main subjects for increasing speed in electric railway. When a vehicle increases the speed over 350km/h, vibrations and wave propagation reflections occur severely. Therefore, the system suitable for the speed are needed. A wave propagation speed of contact wire is the main criteria to determine the tension for the system. Therefore, a train speed is restricted below 70% of wave propagation speed of it in European railway code. In this study, we measured a strain and uplift of contact wire while HEMU-430X tain is operated for the speed-up trial test in Kyungbu high-speed railway. The measured strain and uplift are analyzed with wave propagation speed according to the speed-up. The more a train speed reaches to a propagation speed, the more measured strain is high. Through the study, an experimental approach is performed about the code which a train speed is restricted below 70% of wave propagation speed of it.

Effect of Electric Fields on the Propagation Speed of Tribrachial Flames in Coflow Jets (동축류 제트에서 삼지화염 전파의 전기장 효과에 대한 실험적 연구)

  • Won, Sang-Hee;Chung, Suk-Ho;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.220-226
    • /
    • 2006
  • The effect of electric fields on the propagation speed of tribrachial flames has been investigated in a coflow jet by observing the transient flame propagation behavior after ignition. Without having electric fields, the propagation speed of tribrachial flame edges showed a typical behavior by having an inverse proportionality to the mixture fraction gradient at the flame edge. The behavior of flame propagation with the electric fields was investigated by applying high voltage to the central fuel nozzle and the enhancement of propagation speed has been observed by varying the applied voltage and frequency for AC electric fields. The propagation speed of tribrachial flame was also investigated by applying negative and positive DC voltages to the nozzle and similar improvements of the propagation speed were also observed. The propagation speeds of tribrachial flames in both the AC and DC electric fields were correlated well with the electric field intensity, defined by the electric voltage divided by the distance between the nozzle electrode and the edge of tribrachial flames.

  • PDF

A Study on the Flame Propagation Characteristics for LPG and Gasoline fuels by Using Laser Deflection Method (레이저 굴절법을 이용한 LPG와 가솔린 연료의 화염전파 특성에 관한 연구)

  • Lee, Kihyung;Lee, Changsik;Kang, Kernyong;Kang, Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1608-1614
    • /
    • 2000
  • For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different intial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0 and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher.

Characteristics of Propagating Tribrachial Flames in Counterflow (대향류 유동장에서 삼지 화염 전파 특성에 관한 연구)

  • Chung, Tae-Man;Ko, Young-Sung;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.422-427
    • /
    • 2000
  • Propagation characteristics of tribrachial flames have been investigated experimentally in both two-dimensional and axisymmetric counterflows. Mixture fraction gradient at stoichiometric location is controlled by varying equivalence ratios at the two nozzles, one of which maintains rich while the other lean premixture. Tribrachial flames propagating through these mixtures are investigated. The propagation speed of tribrachial flames in two-dimensional counterflow decreases with fuel concentration gradient and has much higher speed than the maximum speed predicted previously in two-dimensional mixing layers. From an analogy with premixed flame propagation, this excessively large propagation speed can be attributed to the tribrachial flame propagating with respect to burnt gas. Corresponding maximum speed in the limit of small mixture fraction gradient is estimated and extrapolated experimental results substantiate this limiting speed. As mixture fraction gradient approaches zero, a transition in propagation characteristics occurs, such that the propagation speed of tribrachial flame approaches stoichiometric laminar burning velocity with respect to burnt gas. Similar behavior has been obtained for tribrachial flames propagating in axisymmetric counterflow.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2058-2065
    • /
    • 2004
  • A light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames to obtain the flame propagation speed in freely falling droplet suspension produced by an ultrasonic atomizer. Two MICRO probes are used to monitor time-series signals of OH chemiluminescence from two different locations in the flame. By detecting the arrival time difference of the propagating flame front, the flame propagation speed is calculated with a two-point delay-time method. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the two-point delay-time method by the MICRO system. Furthermore, the relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with three different experimental conditions by changing the fuel injection rate. It was confirmed that the two-point delay-time method with two MICRO probes is useful and convenient to obtain the flame propagation speed and that the flame propagation speed depends on the spray properties.

Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder (엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

Application of Light Collecting Probe with High Spatial Resolution to Spark-Ignited Spherical Spray Flames (불꽃점화 구형분무화염에서 고공간 분해능을 가진 집광프로브의 응용)

  • Yang Young-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.20-25
    • /
    • 2004
  • In order to obtain the flame Propagation speed in freely falling droplet suspension Produced by an ultrasonic atomizer, a light collecting probe named Multi-color Integrated Cassegrain Receiving Optics (MICRO) is applied to spark-ignited spherical spray flames. Two MICRO probes are used to monitor time-series signals of OH chemilumine-scence from two different locations in the flame. The flame propagation speed is calculated by detecting the arrival time difference of the propagating flame front. In addition, time-series images of OH chemiluminescence are simultaneously obtained by a high-speed digital CCD camera to ensure the validity of the MICRO system. Furthermore, relationship between the spray properties measured by phase Doppler anemometer (PDA) and the flame propagation speed are discussed with k different experimental conditions by changing the fuel injection rate. It was confirmed that the MICRO probe system was very useful and convenient to obtain the flame propagation speed and that the flame propagation speed was different depending on the spray properties.

Normal and Micro Gravity Experiments on Propagation Speed of Tribrachial Flame of Propane in Laminar Jets (정상 및 미소중력장에서 프로판 층류 제트 삼지 화염의 전파속도에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Fujita, O.;Ito, K.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.47-54
    • /
    • 2002
  • The propagation speed of tribrachial flame in laminar propane jets has been investigated experimentally under normal and micro gravity conditions. The displacement speed was found to vary nonlinearly with axial distance because flow velocity along stoichiometric contour was comparable to the propagation speed of tribrachial flame for the present experiment. Approximate solutions for velocity and concentration accounting density difference and virtual origins have been used in determining the propagation speeds of tribrachial flame. Under micro gravity condition, the results showed that propagation speed of tribrachial flame is largely affected by the mixture fraction gradients, in agreement with previous studies. The limiting maximum value. of propagation speeds under micro gravity conditions are in good agreement with the theoretical prediction, that is, the ratio of maximum propagation speed to the stoichiometric laminar burning velocity is proportional to the square root of the density ratio of unburned to burnt mixture.

  • PDF

The Effect of Piston Configuration on Combustion and Flame Propagation (피스톤 형상이 연소와 화염전파에 미치는 영향)

  • Jie, Myoung-Seok;Kang, Ki-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.511-517
    • /
    • 2019
  • Two type pistons which had different configuration were made to find out the effects on combustion and flame propagation. Flame propagation speed was obtained by use of the cylinder head gasket ionization probe. Ionization Probe voltage output and flame propagation speed were increased according to the air fuel mixture ratio increase. Exhaust direction flame propagation speed was fastest in combustion chamber and next was front direction, rear direction and intake direction cause of tumbling motion in cylinder. In case of remove the valve pocket in piston, average flame propagation speed changed slowly and spark timing was advanced. Also emission was decreased.

Propagation Characteristics of Turbulent Premixed Flames in Nearly Isotropic Turbulent Flows (등방성 난류 유동장내 예혼합 화염의 자유 전파속도에 관한 실험적 연구)

  • Lee, S.J.;Noh, D.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.35-41
    • /
    • 2003
  • Propagation speeds of turbulent premixed flames have been measured in a pulsed-flame flow reactor which generates flames propagating in nearly isotropic turbulent flow field with U'/$S_L$ ranging from 1.2 to 5.3. The measurement involved a high-speed digital imaging at 1000 frames/second to capture the flame propagation motion. In addition to the flame speed measurements, flame perimeter ratio was measured for comparison. The observed flame propagation speed is high ranging from 5 to 20 times the laminar flame speed for the range of U'/$S_L$. The flames observed at extreme equivalence ratios exhibit intermittent propagation in that only a small fraction of ignited flame kernel resulted in full propagation of the flame. Also, at low equivalence ratios the flame speed decreased substantially even at high turbulence intensities.

  • PDF