• Title/Summary/Keyword: Propagation Mechanism

Search Result 490, Processing Time 0.025 seconds

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

A study on fatigue life of Al 7075/CFRP multilayered hybrid composite materials (Al 7075/CFRP 다적층 하이브리드 복합재료의 피로수명에 대한 연구)

  • 윤한기;김연겸;박준수;이경봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.92-102
    • /
    • 1996
  • In this research, to develope the A1 7075/CFRP multilayered hybrid composites, CRALL(Carbon Reinforced aluminum lamiate) specimens were processed by autoclavecuring system that curing temperature, time, surface pretreatment condition of aluminum were constant. Andthe fatigye life and failure mechanism on CFRP volume fraction and fiber orientation of CRALLspecimens were investigated. A fatigue life was greatly influenced by effect of CFRP fiber volume fraction but it was less effected than those of fiber orientation. The fatigue failure arised from interface delamination of CFRP and aluminum sheet after shear fracture of aluminum layer. The failure mechanism is assumed that the aluminum laminates which divide the CFRP into many thim layers tend to arrest the failure propagation.

  • PDF

Effect of Stress Waveform on Corrosion Fatigue Crack Propagation in High Strength Steels-the Role of Anodic Dissolution Mechanism (고장력강의 부식피로균열전파에 미치는 하중파형의 영향과 양극용해기구의 역할)

  • 하회석;이성근
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.147-155
    • /
    • 1993
  • The effect of stress waveforms on corrosin fatigue and the role of dissolution mechanism in 3NilCr steel and 20Ni maraging steel have been investigated in aerated 3% NaCl solution and synthetic seawater under sinusoidal, triangular, square, positive sawtooth, negative sawtooth, and trapezoidal stress waveforms with open circuit at frequency of 1Hz and stress ratio of 0.1. The crack growth rates under square waveform were substantially lower than under sinusoidal and triangular waveforms, but the crack growth rates under sinusoidal waveform were slightly higher under triangular waveform. For a given frequency the growth rates under the positive sawtooth waveform are higher than those under the negative sawtooth waveform. The fatigue crack growth rates of most specimens were in good agreement with the values calculated by the model based on the dissoultion mechanism.

  • PDF

An Overview on Performamce Control and Efficient Design of Lateral Resisting Moment Frames

  • Grigorian, Mark;Grigorian, Carl E.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.141-152
    • /
    • 2013
  • This paper presents a brief overview of the recently developed performance-control method of moment frame design subjected to monotonously increasing lateral loading. The final product of any elastic-plastic analysis is a nonlinear loaddisplacement diagram associated with a progressive failure mechanism, which may or may not be as desirable as expected. Analytically derived failure mechanisms may include such undesirable features as soft story failure, partial failure modes, overcollapse, etc. The problem is compounded if any kind of performance control, e.g., drift optimization, material savings or integrity assessment is also involved. However, there is no reason why the process can not be reversed by first selecting a desirable collapse mechanism, then working backwards to select members that would lead to the desired outcome. This article provides an overview of the newly developed Performance control methodology of design for lateral resisting frameworks with a view towards integrity control and prevention of premature failure due to propagation of plasticity and progressive P-delta effects.

Attention-based for Multiscale Fusion Underwater Image Enhancement

  • Huang, Zhixiong;Li, Jinjiang;Hua, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.544-564
    • /
    • 2022
  • Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.

The Consistency Management Using Trees of Replicated Data Items in Partially Replicated Database (부분 중복 데이터베이스에서 중복 데이터의 트리를 이용한 일관성 유지)

  • Bae, Mi-Sook;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.647-654
    • /
    • 2003
  • The replication of data is used to increase its availability and to improve the performance of a system. The distributed database system has to maintain both the database consistency and the replica consistency. This paper proposes an algorithm which resolves the conflict of the operations by using the mechanism based on the structure that the replicas of each data item are hierarchically organized. Each update is propagated along the tree based on the fact that the root of each data item is the primary replica in partially replicated databases. The use of a hierarchy of data may eliminate useless propagation since the propagation can be done only to sites having the replicas. In consequence, the propagation delay of updates may be reduced. By using the timestamp and a compensating transaction, our algorithm resolves the non-serializability problem caused by the conflict of operations that can happen on the way of the update propagation due to the lazy propagation. This resolution also guarantees the data consistency.

A Probabilistic Model of Damage Propagation based on the Markov Process (마코프 프로세스에 기반한 확률적 피해 파급 모델)

  • Kim Young-Gab;Baek Young-Kyo;In Hoh-Peter;Baik Doo-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.524-535
    • /
    • 2006
  • With rapid development of Internet technology, business management in an organization or an enterprise depends on Internet-based technology for the most part. Furthermore, as dependency and cohesiveness of network in the communication facilities are increasing, cyber attacks have been increased against vulnerable resource in the information system. Hence, to protect private information and computer resource, research for damage propagation is required in this situation. However the proposed traditional models present just mechanism for risk management, or are able to be applied to the specified threats such as virus or worm. Therefore, we propose the probabilistic model of damage propagation based on the Markov process, which can be applied to diverse threats in the information systems. Using the proposed model in this paper, we can predict the occurrence probability and occurrence frequency for each threats in the entire system.

High Performance Speed Control of IPMSM with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and ANN(artificial neural network) control. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility md numerical processing capability. Also, this paper proposes speed control of IPMSM using LM-FNN and estimation of speed using artificial neural network controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. 'The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Analysis results to verify the effectiveness of the new hybrid intelligent control proposed in this paper.

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

A Study Based on Molecular Orbital Theory of Polymerization of Oxolane High Explosives (Oxolane 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.278-283
    • /
    • 2010
  • The cationic polymerization of oxolane high explosives which have pendant explosive groups such as azido, nitrato and hydrazino is investigated theoretically using the semiempirical MINDO/3, MNDO and AM1 methods. The nucleophilicity and basicity of oxolane high explosives can be explained by the negative charge on oxygen atom of oxolane. The reactivity of propagation in the polymerization of oxolane can be represented by the positive charge on carbon atom and the low LUMO energy of active species of oxolane. The reaction of the oxolane high explosives in oxonium ion form to the open chain carbenium ion form is expected by computational stability energy (17.950~30.197 kcal/mol) of the oxonium ion and carbenium ion favoring the carbenium ion. The relative equilibrium concentration of cyclic oxonium ion and carbenium ion is found to be a major determinant of mechanism, owing to the rapid equilibrium of these catoinic forms. Based on calculation, in the prepolymer propagation step, $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.