• 제목/요약/키워드: Propagation Mechanism

검색결과 490건 처리시간 0.022초

Design of a Propagation Wave Type Microrobot for Moving on the Slippery Surface

  • Kim, Eui-Jin;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2072-2077
    • /
    • 2003
  • Animal-like robots are serving an important role as a linkage between biology and engineering. So, in this paper, we aim to develop a biomimetic microrobot that mimics the locomotion mechanism of a gastropod. This microrobot has 3 DOF (x, y translation and rotation), and has small size, unlimited traveling range, high resolution and low cost. Its movement can be made using propagation wave that is generated by the controllable sinusoidal voltage source and piezoelectric effects. This soft motion that can be generated by propagation wave and piezoelectric mechanism would be useful for the motion on the slippery surface. So we modeled the propagation wave mechanism including piezoelectric effect and friction on the contact surface, and could know the velocity of the microrobot is dependent on the driving frequency, input voltage peak, propagation wavelength and surface friction coefficient. With these results we design the microrobot, and accomplish its fabrication and experimentation. The development of this microrobot shall be aimed to design an autonomous moving actuator like animal. Also it can be used from micromanipulation system technology to biology and medicine.

  • PDF

층류제트 화염의 노즐직경에 따른 안정화 메커니즘과 화염형상에 관한 연구 (A Study on the Flame Configuration and Flame Stability Mechanism with a Nozzle Diameter of Laminar Lifted Jet Flame)

  • 김태권;김경호;하지수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.204-215
    • /
    • 2011
  • 화염 안정성은 층류부상화염의 중요한 메커니즘 중 하나이며 화염전파속도는 화염안정화를 평가하기 위한 척도가 된다. Bilger는 삼지점을 기준으로 혼합분율과 화염의 형상에 관계된 삼지화염의 화염 전파속도 및 안정화 메키니즘을 제시하였다. 그러나 동축류 작은 노즐을 이용한 실험과 수치해석에서는 화염이 형성되고 소화되는 전 과정을 상세히 관찰 할 수는 없었다. 본 논문에서는 노즐 직경에 따른 화염거동과 화염 형상 및 안정화 메커니즘에 대하여 세분화하였다. 본 논문의 결과로 노즐에 따른 삼지화염의 거동과 삼지화염전파, 화염면 전파 및 평면화염의 존재 등을 구분하였다. 그리고 삼지화염전파 거동에 있어서 열린삼지화염전파 및 닫힌 삼지화염전파 거동에 대해 구분하였다.

혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향 (Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II))

  • 공병채;최명수;권현규;최성대
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Design Considerations to Enhance Perforation Corrosion and Life Prediction of Automotive Body Panel

  • Choi, Minsoo;Chung, Bumgoo;Choi, Jaewoong
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.247-251
    • /
    • 2003
  • The corrosion forms of automotive body panels are various. One of the representations is a corrosion pitting and its propagation on the lapped portion by galvanic corrosion. But it has been difficult in correlation analysis about the corrosion propagation rate and mechanism of pitting and the actual automotive body in field. This present study interprets experimentally the rust pitting occurrence mechanism on the lapped panels through experimental methods. And field car investigation was executed for correlation analysis with experimental results. This paper compares corrosion propagation rate by pitting on hot-dip galvannealed steel sheets with corrosion forms in the automotive field condition. The research fundamentals which make it possible to predict the pitting occurrence and propagation on the lapped panels in the actual vehicles are given.

정적 연소실내에서 화염 전파 과정에 대한 실험적 연구 (The Experimental study on the Flame Propagation Process of a Constant Volume Combustion Chamber)

  • 김춘중;강경구
    • 한국산업융합학회 논문집
    • /
    • 제2권1호
    • /
    • pp.121-130
    • /
    • 1999
  • It is necessary to measure pressure, temperature, chemical equilibrium and the shape of flame in order to understand the combustion process in a combustion chamber. In particular, the flame formulation and combustion process of divided combustion chamber are different from those of a single chamber, And the variable diameter of a jet hole can effect not only physical properties like ejection velocity, temperature and time of combustion but also a chemical property like the reaction mechanism. Accordingly temperature is one of the most important factors which influence the combustion mechanism. This paper observed shape of flame by using the schlieren photographs and measured the pressure in a combustion chamber and the reaching time of the flame by ion probe By doing these, we investigation the formulation of the flame and the process of propagation. These measurement methods can be advanced in understanding the combustion process and process and propagation of flame.

  • PDF

질소희석된 메탄 동축류 제트에서 화염 부상 메커니즘에 관한 연구 (Mechanism of Lifted Flames in Coflow Jet with Diluted Methane)

  • 홍기정;원상희;김준홍;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.177-184
    • /
    • 2003
  • Stabilization mechanism of lifted flame in the near field of coflow jets has been investigated experimentally and numerically for methane fuel diluted with nitrogen. Lifted flames were observed only in the near field of coflow jets until blowout occurred in the normal gravity condition. To elucidate the stabilization mechanism for the stationary lifted flames in the near field of coflow jets for the diluted methane having the Schmidt number smaller than unity, the behaviors of the stationary lifted flame in microgravity and unsteady propagation phenomena were investigated numerically at various conditions of jet velocity. It has been founded that the buoyancy plays an important role for flame stabilization of lifted flame in normal gravity and the stabilization mechanism is due to the significant variation of the propagation speed of lifted flame edge compared to the local flow velocity at the edge.

  • PDF

부상화염에서 화염 곡률반경 특성에 관한 연구 (A Study on the Flame Curvature Characteristics in a Lifted Flame)

  • 하지수;김태권;박정;김경호
    • 한국가스학회지
    • /
    • 제14권2호
    • /
    • pp.34-39
    • /
    • 2010
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염 전파속도를 실험으로 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률에 따른 삼지화염 전파속도에 관하여 논의된 바가 없기에, 본 논문에서 화염의 곡률에 따른 화염전파속도의 연관성을 제시하고자 하였다. 본 논문의 결과로 층류부상화염의 부상높이가 연료의 출구속도와 노즐의 직경에 따라서 결정됨을 알 수 있었다. 그리고 정지된 부상화염의 유동속도에 비례하는 연료의 출구속도에 곡률의 크기가 비례함을 보였고, 또 층류부상화염의 부상높이가 높아질수록 곡률반경의 크기가 커짐을 알 수 있었다. 따라서 곡률효과의 중요성이 인식되어야 하며 화염안정화 메커니즘을 표현하기 위해 제안된 Bilger의 제안식이 곡률효과를 고려하여 수정되어야한다.

국소 슈미트수가 부상화염 및 화염전파속도에 미치는 영향에 관한 연구 (The Study on Effect of Local Schmidt Number on Lifted Flame and Its Propagation Velocity)

  • 전민규;이민정;정용진;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.75-76
    • /
    • 2015
  • Lifted flame stabilization mechanism can be explained with constant Schmidt number from the equation of $H^{\ast}_L/d^2_o=const{\times}v_e^{(2Sc-1)/(Sc-1)}$. In this research, a method of local Schmidt number was applied in order to measure edge flame propagation velocities, and edge flame propagation velocity was calculated from the trend between lift-off height and nozzle flow rate.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.