• Title/Summary/Keyword: Propagation Direction

Search Result 553, Processing Time 0.024 seconds

An Experimental Analysis of the Effects of Water Vapor Partial Pressure in Inlet Air, Spark Advance and Fuel Type on the Flame Propagation in a Spark Ingnition Engine (흡기중의 수증기분압과 점화시기 및 연료 변화에 따른 스파크 점화기관의 화염 전파 특성 분석)

  • 이택헌;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.191-198
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air, spark advance and fuel type in the spark ignition engine were investigated through the experiments of combustion and flame arriving pattern analysis using ionization probe. The results of flame propagation experiment using ionization probe show that the flame which ignited from spark plug located at the center of the combustion chamber propagated faster in exhaust side than in intake side due to the mixture flow motion inducted into combustion chamber from intake tumble port at all conditions. And as the partial vapor pressure increased, the flame propagation became slower in all direction. Especially effects were greater for intake side than the exhaust side.

  • PDF

A Study on the Longitudinal Vibration of Finite Elastic Medium using Laboratory Test (실내실험을 통한 유한탄성 매질의 종방향 진동에 대한 연구)

  • Park, Ki-Shik
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.58-62
    • /
    • 2002
  • Longitudinal wave tests with finite elastic medium were performed to investigate the difference between measured values and theoretical values of propagation velocity and elasticity modulus. Each accelerometer was attached on finite elastic medium with same phase and different positions to check the particle motion. The results show that measured values of elasticity moduli from both time domain and frequency domain were similiar to theoretical value. Polarity of signal depends entirely on the phase of accelerometer. It proved that the propagation velocity and the particle motion are in the same direction when a compressive stress is applied. And also the propagation velocity and the particle motion depend on the intensity of the stress and material properties respectively.

Fatigue crack propagation of buried pipe steel under mixed model loading (혼합모드하중을 받는 매석배관강의 피로균열전파 거동)

  • 이억섭;최용길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.473-476
    • /
    • 2000
  • Recently, many studies focus on mixed-mode fatigue-fracture characteristics of characteristics of materials. In order to reveal crack initiation and propagation mechanisms in combined -mode fatigue. This paper investigates the initiation and propagation behavior of the fatigue crack of the STS304 specimens under mixed mode loading conditions. moreover crack arrest and branch phenomena were analyzed with respect to the change do the angle of inclined loading. The relationship between the angle of inclined loading and the angle of branched crack was studied. A greate number of cycles are necessary to initiate a new crack from the initial crack. The direction of the new crack propagation is determined by MTS theory.

  • PDF

The effects of microparticles on the crack propagation (균열 진전에 대한 미세 입자의 영향)

  • 정보영;박성도;윤영기;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1495-1498
    • /
    • 2003
  • Recently, self-healing methods of a cracked matrix, especially polymeric composite materials, became the center of engineering researchers. In this paper, we summarized the self-healing concept for polymeric composite materials and investigated the effect of microparticle on the crack growth behavior in colorless and transparent matrix by experimental observation to describe the crack propagation around the microparticle inside epoxy matrix composite. Compression splitting test for the specimen involving microparticle was conducted. In addition, FE analysis was pursued to present the stress contour around microparticle in the matrix. Through the experiments and FE analysis, we found that the size. relative position, bonding condition and relative stiffness of microparticle are important parameters to decide the direction of crack propagation, which is related to the rupture of microparticle for self-healing

  • PDF

용접부 쉐브론노치 형상에 대한 균열전파 특성

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.194-197
    • /
    • 1996
  • The high-strength aluminum alloy 7075-T651 was used to observe the fatigue-crack-propagation behavior for the various stress ratios with constant amplitude loading and thus to predict the fatigue life. With a chevron notch in the specimen the fatigue-crack-propagation behavior of through crack was investigated. Crack propagation behavior of through crack in the depth direction and crack growth of weldments were experimentally studied. Base material heat affected zone and weld material were considered in the fracture of weldments. The change of crack-propagation length with respect to several parameters such as stress intensity factor range(ΔK) effective stress intensity factor range(ΔKeff)ration of effective stress intensity factor range(U) stress intensity factor of crack opening point(K op) maximum stress intensity factor(K max) and number of cycles(Nf)was determined. The crack length of through crack of weldments was 2.4mm and the remaining part was a base material. The experiment was accomplished by making the crack propagate near the base material.

  • PDF

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

The Evaluation of GFRP Pipe by NDT Methods (비파괴시험에 의한 GFRP Pipe의 평가)

  • Lee, J.S.;Cho, K.S.;Chang, H.K.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • It is desirable to develop the effective NDT techniques to evaluate the strength of composite structures. In this study several of acoustic NDT techniques were applied to investigate useful parameters for evaluating the filament wound GFRP structures and following results were obtained. 1. Propagation velocity of stress wave to axial direction in the filament wound GFRP pipe depends on the effective modulus along the propagation direction and source location was parcticable from the a measured velocities. 2. By the application of acoustic emission techniques to GFRP pipe during hydraulic test, it was proven to be possible to detect the damage initiating pressure which could be evaluated nondestructively through the measuring of stress wave energy factor(SWEF). 3. The final failure pressure of GFRP was greatly influenced in the presence of pass through defects, and void-like defects were more dangerous than the laminar type defects.

  • PDF

Backward Propagation of User-Defined Integrity Constraints On Active Object-Oriented Database (능동적 객체지향 데이타베이스에서 사용자 정의 제약조건의 역방향 전달에 관한 연구)

  • 도남철;최인준
    • The Journal of Information Technology and Database
    • /
    • v.1 no.1
    • /
    • pp.63-81
    • /
    • 1994
  • The trigger mechanism in active object-oriented database systems is known to be a good tool for describing user-defined integrity constraints. It cannot adequately support, however, certain integrity constrains specified on the objects in class composition hierarchy. Those are the cases where the constraints must be maintained in the forward direction along the composition hierarchy as well as in the backward direction We call theses kinds of problems "backward propagation problem" and investigate several ways to resolve them using the currently available techniques. Based on them, a new constructor, called CONSTRAIN $T^{cch}$, is proposed. The constructor can be realized with enhanced facilities for active OODBMS which we recommend in this paper.d facilities for active OODBMS which we recommend in this paper.r.

  • PDF

Friction-Based and Acoustically-Levitated Object Transport Using Ultrasonic Vibration (초음파 진동을 이용한 마찰 및 음향부상에 의한 물체의 수송)

  • Byoung-Gook Loh;Yong-Kuk Park
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.590-599
    • /
    • 2003
  • In this study. object transport method based on ultrasonic flexural vibration is presented. Ultrasonic vibration generates ultrasonic traveling waves on the surface of elastic medium. Objects are transported through the interaction with traveling waves propagating in medium. Two types of transport methods are studied: frictional drive and acoustic levitation. With frictional drive, objects are transported in contact with the beam in the opposite direction of wave propagation whereas with acoustic levitation, objects are acoustically levitated above the beam surface and transported in the wave propagation direction. Transport characteristics are experimentally investigated using objects of different shapes and sizes. The transition from acoustic levitation mode to frictional drive mode is also examined. and it is found to occur when the ratio of mass to area of an object exceeds the threshold ratio of mass to area. It is envisaged that this feasibility study will serve as a stepping-stone for ultrasonic vibration to become an effective industrial material handling device in the future.

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.