• Title/Summary/Keyword: Propagation Direction

Search Result 553, Processing Time 0.02 seconds

Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures (압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링)

  • Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.957-964
    • /
    • 2011
  • This investigation presents a finite element method to obtain the transmission properties of bulk elastic waves in piezoelectric band gap structures(phonon crystals) for varying frequencies and modes. To this end, periodic boundary conditions are imposed on a three-dimensional model while both in-plane and out-of-plane modes are included. In particular, the mode decoupling characteristics between in-plane and out-of-plane modes are identified for each electric poling direction and the results are incorporated in the finite element modeling. Through numerical simulations, the proposed modeling method was found to be a useful, effective one for analyzing the wave characteristics of various types of piezoelectric phononic band gap structures.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

An Experimental Study on the Flame Characteristics of the Air/$C_3$$H_8$ Premixed Flame Using Large Axial Mean Velocity Variation (급격한 평균유속 변동에 의한 관내 Air/$C_3$$H_8$ 예혼합 화염의 소화특성에 관한 실험적 연구)

  • Kim, Nam-Il;Lee, Eun-Do;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.540-545
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors in which the shape, position and intensity of the flame varied, but more detail and fundamental research has been necessary. The flame stabilization condition in a tube, a unique steady state, and the unsteady behaviors, using the stabilization condition as an initial condition, were carried out in recent years. In this paper, propane-air premixed flame was stabilized in a tube and the flame behavior was observed when the mean velocity variation was imposed into the opposite direction of the initial mean velocity. The velocity variation is larger than the burning velocity and longer than the reaction time scale. During the period of the velocity variation flame is not extinguished. But after the period of the mean velocity variation the flame could be re-stabilized or be extinguished depending on the experimental conditions: equivalence ratio, period of velocity variation and magnitude of velocity variation. The extinction mechanisms were classified into the two cases, one is caused by the flame stretch in the shear layer near the wall, and the other is caused by the vortices and vortexes, which are generted by the acoustic waves.

Error Recovery by the Classification of Candidate Motion Vectors for H.263 Video Communications (후보벡터 분류에 의한 영상 에러 복원)

  • Son, Nam-Rye;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.163-168
    • /
    • 2003
  • In transmitting compressed video bit-stream over Internet, packet loss causes error propagation in both spatial and temporal domain, which in turn leads to severe degradation in image quality. In this paper, a new approach for the recovery of lost or erroneous Motion Vector(MV)s by classifying the movements of neighboring blocks by their homogeneity is proposed. MVs of neighboring blocks are classified according to the direction of MVs and a representative value for each class is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in many cases than existing methods.

Analysis of Abnormal Wave at the West Coast on 31 March 2007 (2007년 3월 31일 서해안에 발생한 이상파랑에 대한 원인 분석)

  • Eom, Hyun-Min;Seung, Young-Ho;Woo, Seung-Buhm;You, Sung-Hyup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.217-227
    • /
    • 2012
  • On 31 March 2007, the abnormal wave occurred along western coast of Korean including Yeonggwang. In this paper, this event is studied using available field measurement data for the event analysis and numerical model for reproducing the unknown waves. We found several 1-min interval tidal elevation and mean sea level pressure (MSLP) data along the western coast of Korea and analyzed it using wavelet technique. We computed the arrival time and the propagation direction of abnormal wave using wavelet results and performed the numerical simulation using 2 dimensional shallow water wave model. The sea level under the forcing of air pressure jump was obviously amplified by the Proudman resonant effect. The computed sea levels compared with observations are underestimated, but the order of arrival time at the tidal station showed good agreement.

Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests (이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.157-167
    • /
    • 2000
  • Korea Ocean Research and Development Institute performed the basic design of the Ear-Do Ocean Research Station in 1998. The design wave was taken to be the deep water wave which was obtained through wave hindcasting procedure. Wave forces acting on the structure were calculated by Morison formula utilizing the stream function theory of 5th. order. In the present study, a three dimensional hydraulic model testing was undertaken to investigate the validity of the basic design, measuring wave propagation over the Ear-Do, horizontal wave forces and air gaps. The measured forces were all compared by the corresponding values calculated by SACS program based on th design on the design wave. The results showed that in the three deep water wave directions (SSW, S, SE) the measured wave farces appeared less than the SACS calculated. But in the NNW wave direction, the measured forces generally exceeded the calculated values and showed a peculiar pattern very similar to the case that waves are superimposed by an unidirectional current. It was also found that the measured air gap underneath the structure appeared less than the values taken in the basic design for all wave directions.

  • PDF

Application of Boussinesq Equation Model for the Breaking Wave Behavior around Underwater Shoals (수중 천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용)

  • Chun, In-Sik;Kim, Gui-Dong;Sim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2006
  • In the present study, a numerical model using Boussinesq equation is set up to predict the interacted equilibrium between waves and their induced currents in the occurrence of breaking waves over an underwater shoal, and the numerical results are compared with results of existing hydraulic experiments. A sensitivity analysis has been done to find out appropriate values of breaking wave parameters with the result (regular wave case) of Vincent and Briggs (1989)’ experiment. Then the numerical model is applied to the irregular wave cases of the experiment and the hydraulic model test of Ieodo which is a natural undersea shoal. The results show that a strong current forms in the wave direction at the downstream side of the shoals, causing the attenuation of wave heights there. The calculated wave heights generally show a similar pattern with the measured data.

Microcrack Development in the Pocheon Granite due to Cyclic Loading (피로하중에 의한 포천화강암의 미세균열 발달특성)

  • 장보안;김영화;김재동;이찬구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Deformation behavior and microcrack development due to uniaxial compressive cyclic loading in the Pocheon granite were investigated using the ultrasonic velocity measurements and the differential strain analysis(DSA). Most microcracks were developed along the direction parallel to the loading axis. Microcracks developed at the early stage of cyclic loading were formed by propagation of pre-existing cracks. Ultrasonic velocity measurement, DSA and measurement of permanent deformation are good tools to represent microcrack development in rock. Since results from each method are slightly different, microcrack development should be interpreted from all three methods. The magnitude of microcracks developed at the early stage of cyclic loading under 80% loading level is twice compared with those under 70% loading level. The highest volumetric crack strain is about 3000, indicating that the Pocheon granite will fail with 0.3% occupation of microcrack in volume.

  • PDF

Eunsa Memorial Science Museum and Colonial Science Technology (은사기념과학관(恩賜記念科學館)과 식민지 과학기술)

  • Jung In-Kyung
    • Journal of Science and Technology Studies
    • /
    • v.5 no.2 s.10
    • /
    • pp.69-95
    • /
    • 2005
  • Eunsa Memorial Science Museum is a political space to justify ruling colony. Japanese imperialism made use of science museum in ruling colony under the cloak of propagating science thoughts. The science museums made it natural to rule the inferior Joseon(Korea) by bring the concept of 'Great Science Empire' into relief. The exhibition, lecture, experiment and science movies propagated those colonial ruling ideology. This transplantation of the colonial science museumraised the following problems. First, the science museum was used as means for the propagation of political power. All the aspects of the architecture, exhibition, and operation of the colonial science museum propagated and supported the direction of political authority, and furthermore planted a rosy phantasm of 'Development' and 'Progression' into the colony. Second, The science technology of science museum was treated as 'Result' and 'Instrument'. Japanese imperialism denied that the science is a historical and cultural staple product; it instilled only the 'Instrumental Rationality' in the colony. Third, the science technology dealt in the colonial science museum was below the level. What they educated and set forth as domestic science was to cultivate the laborers people for the political power by internalizing modernistic discipline.

  • PDF

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.