• Title/Summary/Keyword: Propagating Velocity

Search Result 211, Processing Time 0.034 seconds

Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor (저선회 모델 연소기의 연소특성 및 선회각도 영향)

  • Jeong, Hwanghui;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.40-49
    • /
    • 2016
  • This study aims to confirm the characteristics of low swirl combustion at our low swirl model combustor. To do it, it is experimentally conducted by evaluating the flame shape, stability region and emissions according to the swirl angle. The most significant feature of low swirl combustion is a occurrence of lifted flame. Such lifted flames happen to combine exquisitely propagating feature of premixed flame with diverging flow. This feature of lifted flame was confirmed through a velocity flow field and visualized the flame in this model combustor. The visualized flame was classified according to the thermal power and equivalence ratio. The variation study in swirl angles showed that the lean flammable limit could be extended only by swirl angles. Also, as the swirl angle increased, it was confirmed that the NOx and CO emissions were decreased due to the mixing enhancement and shorter resident time.

An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin (3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.93-99
    • /
    • 2022
  • Analytical solutions for regular waves generated by bottom wave makers in a 3-dimensional wave basin were derived in this study. Bottom wave makers which have triangular, rectangular and combination of two shapes were adopted. The 3-dimensional velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions in a wave basin. Then, analytical solutions of 3-dimensional particle velocities and free surface displacement were derived from the velocity potential. The solutions showed physically valid results for regular waves generated by bottom wave makers in a wave basin. The analytical solution for obliquely propagating wave generation from bottom wave maker which works like a snake was also derived. Numerical results of the solution agree well with theoretically predicted results.

Development of Advanced Data Analysis Method Using Harmonic Wavelet Transform for Surface Wave Method (하모닉 웨이브릿 변환을 이용한 표면파 시험을 위한 향상된 데이터 해석기법의 개발)

  • Park, Hyung-Choon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.115-123
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through multilayered systems such as a soil site is an important parameter and carries valuable information in non-destructive site characterization tests. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum determined using the cross power spectrum is easily distorted by background noise which always exists in the field. This causes distortion of measured signal and difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed and the phase spectrum by the proposed method is applied to the determination of dispersion curve. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums and dispersion curves determined by the proposed method were found to be in good agreement with the actual phase spectrums and dispersion curves biased by heavy background noise. The comparison manifests the proposed method to be a very useful tool to overcome noise effects.

Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed (페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도)

  • Ha, Youn-Doh;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.637-643
    • /
    • 2011
  • The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence: when a crack reaches a critical stage(macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.

An Experimental Study on Flame Propagation along Non-premixed Vortex Tube (비예혼합 선형 와환에서의 화염 전파 특성에 관한 실험적 연구)

  • Yang, Seung-Yeon;Roh, Yoon-Jong;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.864-870
    • /
    • 2001
  • Flame propagation along vortex tube was experimentally investigated. The vortex tube was generated by the ejection of propane from a nozzle through a single stroke motion of a speaker and the ignition was induced from a single pulse laser. Non-reactive flow fields were visualized using shadow technique. From these images, vortex ring size and translational velocity were measured in order to determine the ignition time and position. Flame structure and flame speed were measured using high speed CCD camera. Flame speed was accelerated during the initial stage of flame kernel growth, and reached near constant value during steady propagation period. Near the completion of propagation, flame speed was decelerated and then extinguished. Flame speed along the non-premixed vortex tube was found to be linearly proportional to circulation, which was similar to that of the flame propagation along premixed vortex ring. Ignition position minimally affects the propagation characteristics. These imply that flame is propagating along the maximum speed locus expected to be along stoichiometric contour and also support the existence of tribrachial flames.

  • PDF

Wavelet Analysis of Plate Waves in Anisotropic Laminates and Acoustic Source Location (Wavelet 변환을 이용한 이방성 적층판의 판파 해석과 음원 위치 결정)

  • 장영수;정현조
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2000
  • A new approach is presented for the analysis of transient waves propagating in anisotropic composite laminates. The wavelet transform (WT) using the Gabor wavelet is applied to the time-frequency analysis of dispersive flexural waves. It is shown that the peaks of the magnitude of WT in time-frequency domain is related to the arrival times of group velocity. Experiments are performed using a lead break as the simulated fracture source on the surface of quasi-isotropic and unidirectional laminates. For predictions of the dispersion of the flexural mode, Mindlin plate theory is shown to give good agreement with the experimental results. Based on the frequency-dependent arrival times and angular dependence of group velocities of flexural waves, the problem of source location in anisotropic laminates is considered and the results are given.

  • PDF

On the Beam Focusing Behavior of Time Reversed Ultrasonic Arrays Using a Multi-Gaussian Beam Model

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Jeong, Yon-Ho;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2008
  • One of the fundamental features of time reversal acoustic (TRA) techniques is the ability to focus the propagating ultrasonic beam to a specific point within the test material. Therefore, it is important to understand the focusing properties of a TR device in many applications including nondestructive testing. In this paper, we employ an analytical scheme for the analysis of TR beam focusing in a homogeneous medium. More specifically, a nonparaxial multi-Gaussian beam (NMGB) model is used to simulate the focusing behavior of array transducers composed of multiple rectangular elements. The NMGB model is found to generate accurate beam fields beyond the nonparaxial region. Two different simulation cases are considered here for the focal points specified on and off from the central axis of the array transducer. The simulation results show that the focal spot size increases with increasing focal length and focal angle. Furthermore, the maximum velocity amplitude does not always coincide with the specified focal point. Simulation results for the off-axis focusing cases do demonstrate the accurate steering capability of the TR focusing.

Effect of Process Parameters on Laser Overlay Behavior of Fe-based Alloy Powder on Aluminum Substrate (공정 변수에 따른 Al 모재와 Fe계 합금 분말의 레이저 오버레이층 거동)

  • Yoo, Yeon-Gon;Kang, Nam-Hyun;Kim, Cheol-Hee;Kim, Jeong-Han;Kim, Mok-Soon
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • A joining of dissimilar metal combination faces significant problems such as poor strength and cracking associated with brittle intermetallic compounds(IMC) formed. An application of laser allows low heat input; leading to less dilution and smaller heat affected zone. The $CO_2$ laser overlay was conducted on an AC2B alloy with feeding Fe-based powders. The overlay area was significantly influenced from the travel velocity rather than the powder feeding rate. The interface between the overlay and substrate consisted of the hard and brittle IMC($FeAl_3,\;Fe_3Al,\;Fe_2Al_5$), which initiating and propagating the crack. The reciprocating test for the slide wear was conducted on a multi-pass overlay experiment. Comparing with the multi-pass overlay with no overlap, the overlay with 50% overlap showed better wear resistance.

Flow Regimes of Continuously Stratified Flow over a Double Mountain (두 개의 산악 위에서의 연속적으로 성층화된 흐름의 흐름 체계)

  • Han, Ji-Young;Kim, Jae-Jin;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2007
  • The flow regimes of continuously stratified flow over a double mountain and the effects of a double mountain on wave breaking, upstream blocking, and severe downslope windstorms are investigated using a mesoscale numerical model (ARPS). According to the occurrence or non-occurrence of wave breaking and upstream blocking, three different flow regimes are identified over a double mountain. Higher critical Froude numbers are required for wave breaking and upstream blocking initiation for a double mountain than for an isolated mountain. This means that the nonlinearity and blocking effect for a double mountain is larger than that for an isolated mountain. As the separation distance between two mountains decreases, the degree of flow nonlinearity increases, while the blocking effect decreases. A rapid increase of the surface horizontal velocity downwind of each mountain near the critical mountain height for wave breaking initiation indicates that severe downslope windstorms are enhanced by wave breaking. For the flow with wave breaking, the numerically calculated surface drag is much larger than theoretically calculated one because the region with the maximum negative perturbation pressure moves from the top to the downwind slope of each mountain as the internal jump propagating downwind occurs.

A SENSITIVITY STUDY OF THE DISTORTED INLET FLOW IN AXIAL TURBOMACHINERY WITH NOVEL INTEGRAL SCHEME

  • Ng Eddie Yin-Kwee;Liu Ningyu;Lim Hong Ngiap;Tan Daniel
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • For proper installation, operation and performance of axial flow jet engines in aircrafts, the impacts and effects of inlet flow distortion in axial compressors have to be understood. Inlet distortion conditions may cause component-mismatch and instability problems known as rotating stall, and severe oscillations of mass flow rate called surge or a combination of both. Typical effects of this phenomenon include stresses and wear on the compressor blading, destruction of entire jet engines due to the failure of airfoil and mechanical failure or interruption of the combustion process. Therefore, it is important to study inlet flow distortion and its propagation effects to minimize and hence to prevent the occurrence of such calamity. The current novel integral method with parametric analysis signifies its validity to this field of research and offers much potential for further improvements. The present effort further indicates that this simple method may be flourishing in the problems of strongly distorted flow and propagating stall in axial compressor. It is therefore believe that using a more realistic and flexible velocity and pressure profiles could develop this approach further.