• Title/Summary/Keyword: Prony Method

Search Result 43, Processing Time 0.018 seconds

A Phase-Domain Equivalent Representation for Electromagnetic Transients Studies (전력계통 과도현상 해석을 위한 상영역에서의 등가축약 기법)

  • Jung, B.T.;Kim, S.H.;Heo, S.I.;Ahn, B.S.;Hong, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.731-733
    • /
    • 1996
  • In this paper, a new time-domain reduction method for unbalanced 3 phase power systems will be represented. The impulse response of the system is used to identify a discrete-time equivalent filter model. The model is formulated directly in the phase domain. Each phase has a self-mode equivalent model and two mutual-mode equivalent models. The equivalent model is determined by the transfer function identification technique based on the Prony analysis. The model is implemented in EMTDC and tested with an unbalanced 3 phase network. The result of test showed that the equivalent model is accurate.

  • PDF

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Eigenvalue Analysis and Detection of Low Frequency Oscillation using PMU Data in KEPCO System (위상동기신호를 이용한 한전계통의 저주파진동 검출과 고유치해석)

  • Shim, Kwan-Shik;Kim, Sang-Tae;Kim, Tae-Kyun;Ahn, Seon-Ju;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.261-284
    • /
    • 2017
  • This paper describes the results of a low-frequency oscillation analysis using data measured in PMU installed in the KEPCO system, and the comparison with eigenvalues computed from the linear model. The dominant oscillation modes are estimated by applying various algorithms. The algorithms are: the extended Prony method; multiple time interval parameter estimation method; subspace system identification method; and spectral analysis. From the measurement data, modes of frequency 0.68[Hz] and 0.92[Hz] were estimated, and modes of frequency 0.63[Hz] and 0.80[Hz] were computed from the eigenvalue calculation. There was a difference between the mode estimated from measurement data and that from the linear model. This is possibly because of an error in the dynamic data of the KEPCO system used in eigenvalue calculation. Because wide area modes exist in the KEPCO system, these modes should be monitored continuously for the reliable operation of the system. In order to prevent total blackouts caused by wide area oscillation, moreover, contingency analysis should be performed in relation to this mode and appropriate measures should be established.