• Title/Summary/Keyword: Promoter Region

Search Result 709, Processing Time 0.032 seconds

Analysis of Porcine $\beta$-casein Gene Promoter by Site-directed Mutagenesis

  • Chung, Hee-Kyoung;Seong, Hwan-Hoo;Im, Seok-Ki;Lee, Hyun-Gi;Kim, Soon-Jeung;Lee, Poongyeong;Lee, Yun-Keun;Chang, Won-Kyong;Moosik Kwon
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.71-71
    • /
    • 2002
  • Promoters for milk proteins have been used far producing transgenic animals due to their temporal and spatial expression patterns. ${\beta}$-casein, a calcium-sensitive casein, is a major milk protein that corresponds ca. 30 per cent of total milk protein. Expression of ${\beta}$-casein is controlled by lactogenic hormones such as prolactin (PRL), composite response elements (CoREs) and transcription factors. CoREs are clusters of transcription factor binding sites containing both positive and negative regulatory elements. ${\beta}$-casein gene promoter contains various regions (CoREs) for gene transcription. We analyzed the promoter region by mutagenesis using exonuclease III and linker-scanning. Transcription control elements usually are positioned in 5'-flanking region of the gene. However, in some cases, these elements are located in other regions such as intron 1. The nucleotide sequences of ${\beta}$-casein promote. region has been reported (E12614). However, the properties of the promoter is not yet clear. In this study, we plan to investigate the properties of cis-regulating elements of porcine ${\beta}$-casein by mutation analysis and expression analysis using dual-luciferase repoter assay system.

  • PDF

Cloning and Molecular Characterization of Porcine β-casein Gene (CNS2)

  • Lee, Sang-Mi;Kim, Hye-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.421-427
    • /
    • 2012
  • The production of therapeutic proteins from transgenic animals is one of the most important successes of animal biotechnology. Milk is presently the most mature system for production of therapeutic proteins from a transgenic animal. Specifically, ${\beta}$-casein is a major component of cow, goat and sheep milk, and its promoter has been used to regulate the expression of transgenic genes in the mammary gland of transgenic animals. Here, we cloned the porcine ${\beta}$-casein gene and analyzed the transcriptional activity of the promoter and intron 1 region of the porcine ${\beta}$-casein gene. Sequence inspection of the 5'-flanking region revealed potential DNA elements including SRY, CdxA, AML-a, GATA-3, GATA-1 and C/EBP ${\beta}$. In addition, the first intron of the porcine ${\beta}$-casein gene contained the transcriptional enhancers Oct-1, SRY, YY1, C/EBP ${\beta}$, and AP-1, as well as the retroviral TATA box. We estimated the transcriptional activity for the 5'-proximal region with or without intron 1 of the porcine ${\beta}$-casein gene in HC11 cells stimulated with lactogenic hormones. High transcriptional activity was obtained for the 5'-proximal region with intron 1 of the porcine ${\beta}$-casein gene. The ${\beta}$-casein gene containing the mutant TATA box (CATAAAA) was also cloned from another individual pig. Promoter activity of the luciferase vector containing the mutant TATA box was weaker than the same vector containing the normal TATA box. Taken together, these findings suggest that the transcription of porcine ${\beta}$-casein gene is regulated by lactogenic hormone via intron 1 and promoter containing a mutant TATA box (CATAAAA) has poor porcine ${\beta}$-casein gene activity.

Novel Mutations in IL-10 Promoter Region -377 (C>T), -150 (C>A) and their Association with Psoriasis in the Saudi Population

  • Al-Balbeesi, Amal O.;Halwani, Mona;Alanazi, Mohammad;Elrobh, Mohammad;Shaik, Jilani P.;Khan, Akbar Ali;Parine, Narasimha Reddy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1247-1250
    • /
    • 2015
  • Background: Psoriasis, a common cutaneous disorder characterized by inflammation and abnormal epidermal proliferation with a prevalence of 2-3% in the general population, may be linked to certain types of cancer. Several studies have reported an association between interleukin 10 (IL-10) variant polymorphisms and inflammatory diseases such as psoriasis vulgaris although the results vary according to the population studied. No studies have been performed in the Saudi population. The present study concerned novel variants and other genetic polymorphisms of the promoter and exonic regions of the IL10 gene in patients with moderate to severe psoriasis and potential differences in genotype compared to a group of healthy volunteers. Materials and Methods: Patients with moderate to severe psoriasis and healthy controls with no personal or family history of psoriasis were selected from the central region of Saudi Arabia. Polymorphisms of the IL 10 gene of both groups were genotyped. Results: We observed two novel variants in 5'UTR region of the promoter precursor with higher prevalence of the genotype with both wild-type alleles in patients compared to the healthy control group. The differences at positions -377 and -150 were significantly associated with disease, both the variants conferred strong protection against psoriasis in Saudi patients. Conclusions: This observation provides further support for the importance of the part that IL10 plays in the pathophysiology of this disease. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of IL-10 in psoriasis.

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree;Kim, Seok-Jo;Kwon, Haw-Young;Son, Sung-Wook;Kim, Kyoung-Sook;Ahn, Hee-Bae;Lee, Young-Choon
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.405-409
    • /
    • 2011
  • The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.

Degradation of Trichloroethylene by a Growth-Arrested Pseudomonas putida

  • Hahm, Dae-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.11-14
    • /
    • 1998
  • A toluene-oxidizing strain of Pseudomanas mendocina KR1 containing toluene-4-mono-oxygenase (TMO) completely degrades TCE with the addition of toluene as a co-substrate in aerobic condition. In order to construct in situ bioremediation system for TCE degradation without any growth-stimulating nutrients or toxic inducer such as toluene, we used the carbon-starvation promoter of Pseudomonas putida MK1 (Kim, Y. et al., J. bacteriol., 1995). Upon entry into the stationary phase due to the deprivation of nutrients, this promoter is strongly induced without further cell growth. The TMO gene cluster (4.5 kb) was spliced downstream of the carbon starvation promoter of Pseudomonas putida MK1, already cloned in pUC19. TMO under the carbon starvation promoter was not expressed in E. coli cells either in stationary phase or exponential phase. For TMO expression in Pseudomonas strains, tmo and carbon starvation promoter region were recloned into a modified broad-host range vector pMMB67HES which was made from pMMB67HE(8.9 kb) by deletion of tac promoter and lacIq (about 1.5 kb). Indigo was produced by TMO under the carbon starvation promoter in a Pseudomonas strain of post-exponential phase on M9 (0.2% glucose and 1mM indole) or LB. 18% of TCE was degraded in 14 hours after entering the stationary phase at the initial concentration of 6.6 ${\mu}$M in liquid phase.

  • PDF

Promoter Methylation of MGMT Gene in Serum of Patients with Esophageal Squamous Cell Carcinoma in North East India

  • Das, Mandakini;Sharma, Santanu Kumar;Sekhon, Gaganpreet Singh;Saikia, Bhaskar Jyoti;Mahanta, Jagadish;Phukan, Rup Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9955-9960
    • /
    • 2014
  • Background: Promoter hypermethylation is a common event in human cancer. O6-methylguanine-DNA methyltransferase (MGMT) is a gene involved in DNA repair, which is methylated in a variety of cancers. We aimed to explore the methylation status of MGMT gene among the North Eastern population where esophageal cancer incidence and exposure to carcinogens like nitrosamines is high. Materials and Methods: A total of 100 newly diagnosed esophageal cancer cases along with equal number of age, sex and ethnicity matched controls were included in this study. Methylation specific PCR was used to determine the MGMT methylation status in serum samples. Results: Aberrant promoter methylation of the MGMT gene was detected in 70% of esophageal cancer cases. Hypermethylation of MGMT gene was found to be influenced by environmental factors like betel quid and tobacco which contain potent carcinogens like nitrosamines. Tobacco chewing and tobacco smoking habit synergistically with MGMT methylation elevated the risk for esophageal cancer development [adjusted OR=5.02, 95% CI=1.35-18.74; p=0.010 for tobacco chewing and Adjusted OR=3.00, 95% CI=1.22-7.36; p=0.014 for tobacco smoking]. Conclusions: Results suggest that the DNA hypermethylation of MGMT is an important mechanism for MGMT gene silencing resulting in esophageal cancer development and is influenced by the environmental factors. Thus MGMT hypermethylation can be used as a biomarker for esophageal cancer in high incidence region of North East India.

Characterization of the Promoter Controling the Stage-Specific Gene Expression of Bombyx mori (누에를 이용한 시기 특이적 발현 조절 유전자 promoter 개발)

  • Park, Seung-Won;Choi, Gwang-Ho;Goo, Tae-Won;Kim, Seong-Ryul;Kang, Seok-Woo
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1466-1472
    • /
    • 2011
  • We characterized embryo early gene (EEG)-704 promoter of the silkworm Bombyx mori, which is specifically regulated in the development stages. To determine core promoter region, 10 different partial mutant clones were tested by luciferase assay in Sf9 cells. About 1.5 kb promoter shows higher luciferase activity than constitutive promoter (BmA3). Interestingly, EEG-704 shares the same DNA sequences with BmHsp20.8 by the result of BLAST analysis; its expression is also increased under heat shock condition. Development of such promoter inducible, directly or indirectly in the developmental-stage, is very useful in making recombinant proteins in transgenic silkworms.

GATA4 negatively regulates bone sialoprotein expression in osteoblasts

  • Song, Insun;Jeong, Byung-chul;Choi, Yong Jun;Chung, Yoon-Sok;Kim, Nacksung
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.343-348
    • /
    • 2016
  • GATA4 has been reported to act as a negative regulator in osteoblast differentiation by inhibiting the Dlx5 transactivation of Runx2 via the attenuation of the binding ability of Dlx5 to the Runx2 promoter region. Here, we determine the role of GATA4 in the regulation of bone sialoprotein (Bsp) in osteoblasts. We observed that the overexpression of Runx2 or Sox9 induced the Bsp expression in osteoblastic cells. Silencing GATA4 further enhanced the Runx2- and Sox9-mediated Bsp promoter activity, whereas GATA4 overexpression down-regulated Bsp promoter activity mediated by Runx2 and Sox9. GATA4 also interacted with Runx2 and Sox9, by attenuating the binding ability of Runx2 and Sox9 to the Bsp promoter region. Our data suggest that GATA4 acts as a negative regulator of Bsp expression in osteoblasts.

Characterization of Korean Cattle Keratin IV Gene

  • Kim, D.Y.;Yu, S.L.;Sang, B.C.;Yu, D.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1055-1059
    • /
    • 2003
  • Keratins, the constituents of epithelial intermediate filaments, are precisely regulated in a tissue and development specific manner. There are two types of keratin in bovine. The type I is acidic keratin and the type II is neutral/basic keratin. 1.5 kb of 5' flanking sequence of Korean cattle Keratin IV gene, type II keratin (59 kDa), was cloned and sequenced. A symmetrical motif AApuCCAAA are located in a defined region upstream of the TATA box. Proximal SP1, AP1, E-box and CACC elements as the major determinants of transcription are identified. When it was compared to the bovine sequence from -600 bp to ATG upstream, the homology was 97% in nucleotide sequence. Several A and T sequences, located in the promoter region, are deleted in the Korean cattle. An expression vector consisted of Korean cattle Keratin IV gene promoter/SV40 large T antigen was transfected to HaCaT cell (Epithelial keratinocyte). The transformed HaCaT cells showed active proliferation when treated with PDGF (Platelet-derived growth factor) in 0.3% soft agar compared to control cells. These results indicate that Korean cattle Keratin IVgene promoter can be used as a promoter for transfection into epithelial cell.

Polymorphism, Genetic Effect and Association with Egg Production Traits of Chicken Matrix Metalloproteinases 9 Promoter

  • Zhu, Guiyu;Jiang, Yunliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1526-1531
    • /
    • 2014
  • Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (-2,400 to -1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at -1954 $C^+/C^-$. Genetic association analysis indicated significant correlation between the deletion genotype ($C^-$) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype ($C^-$) had significantly lower promoter activity than the insertion genotype ($C^+$) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance.