• Title/Summary/Keyword: Promoter Region

Search Result 709, Processing Time 0.028 seconds

Mechanism of Regulation of the pts Promoter Transcription Initiation by Carbon Sources in Escherichia coli (Carbon Source의 변화에 의한 대장균의 pts Promoter 전사 조절 기작)

  • Kim, Soon-Young;Kwon, Hyuk-Ran;Shin, Dong-Woo;Ryu, Sang-Ryeol
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.293-297
    • /
    • 1999
  • The pts operon, which encodes several factors in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) of Escherichia coli, has multiple promoters which respond to different signals to facilitate quick adaptation to changes in growth conditions. The influence of an 1 kbp DNA region upstream of the pts P0 promoter on pts expression was studied in vitro by employing the DNA templates containing both P0 and P1 promoter with or without the 1 kbp upstream DNA region for in vitro transcription assay. The 1 kbp DNA region upstream of the pts P0 promoter, however, had no effect on pts transcription in vitro. The intracellular concentration of cAMP was measured when cells were grown in the presence of glucose, mannose, or mannitol. The transcription of P0 was increased maximally in the presence of glucose even though the concentration of cAMP in the condition was lowest while the transcription from the P1b was highest when cells were grown in the presence of mannose or mannitol even though the intracellular concentration of cAMP was lower than cells grown in the absence of the sugar. These results suggest the possibility of the existence of a glucose inducible repressor specific for the P0 promoter and a second repressor that is inducible by glucose, mannose and mannitol specific for the P1 promoter.

  • PDF

Binding of IciA protein to the dnaA promoter region

  • Kim, Hakjung;Hwang, Deog-Su
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.191-195
    • /
    • 1995
  • IciA protein has been shown as an inhibitor for the initiation of E. coli chromosomal DNA replication at oriC. IciA protein binds the AT-rich region in oriC and then blocks the initiation of chromosomal DNA replication. Two binding sites for IciA protein were identified in dnaA gene, encoding the initiator for the E. coli chromosomal replication, promoter region by gel-shift assay and DNase I footprinting, One, named as IciA site I, is located upstream of the dnaA promoter 1P. The other, named as IciA site II, is located downstream of the dnaA promoter 2P. The sequence comparison of the regions protected from the DNase I cleavage did not result in a clear consensus sequence for the binding of IciA protein, suggesting that IciA protein may be a member of multimeric complex dsDNA binding proteins. This study provided information about the binding mode of IciA protein. Even though the IciA site II and IciA binding site in oriC seem to be composed of two IciA binding units, one binding unit is likely enough to cause the binding of IciA protein to the IciA site I. The binding of IciA protein to the dna4 promoter implies that IciA protein may involve not only the control of the initiation of chromosomal DNA replication but also the control of the dna4 gene expression.

  • PDF

AtERF73/HRE1, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Hypoxia-responsive Cis-acting Elements in Its Promote (애기장대의 AP2/ERF 전사인자인 AtERF73/HRE1의 프로모터에 있어서 저산소 반응 cis-조절 요소의 분석)

  • Hye-Yeon Seok;Huong Thi Tran;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.34-42
    • /
    • 2023
  • In a signal transduction network, from the perception of stress signals to stress-responsive gene ex- pression, binding of various transcription factors to cis-acting elements in stress-responsive promoters coordinate the adaptation of plants to abiotic stresses. Among the AP2/ERF transcription factor family genes, group VII ERF genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/ HRE2, are known to be involved in the response to hypoxia stress in Arabidopsis. In this study, we dissected the HRE1 promoter to identify hypoxia-responsive region(s). The 1,000 bp upstream promoter region of HRE1 showed increased promoter activity in Arabidopsis protoplasts and transgenic plants under hypoxia conditions. Analysis of the promoter deletion series of HRE1, including 1,000 bp, 800 bp, 600 bp, 400 bp, 200 bp, 100 bp, and 50 bp upstream promoter regions, using firefly luciferase and GUS as reporter genes indicated that the -200 to -100 region of the HRE1 promoter is responsible for the transcriptional activation of HRE1 in response to hypoxia. In addition, we identified two putative hypoxia-responsive cis-acting elements, the ERF-binding site and DOF-binding site, in the -200 to -100 region of the HRE1 promoter, suggesting that the expression of HRE1 might be regulated via the ERF transcription factor(s) and/or DOF transcription factor(s). Collectively, our results suggest that HRE1 contains hypoxia-responsive cis-acting elements in the -200 to -100 region of its promoter.

The DNA region of rtn gene essential for resistance against N4 infection (N4에 대해 내성을 나타내는데 필요한 rtn 유전자의 부위)

  • 이동환;유선미;황의욱;이영훈;채건상
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.290-295
    • /
    • 1991
  • N4 phage, which infects E. coli K-12 strains, could not infect E. coli K-12 strains containing rtn(resistant to N4) gene on plasmids, which was isolated from Proteus vulgaris ATCC 13315. The region of rtn gene for Rtn phenotype was reduced to the 1.7 kb HincII-AccI fragment, and rtn gene seemed to have its own promoter. This putative promoter was present in 107 bp HindII-DraI fragment, and known to be functional in E. cole K-12, which is supported by the fact that phenotype of a subclone, pRMG103A1B which does not contain the 107 bp fragment, was dependent on the existance of a functional promoter in the upstream of rtn gene, and that the 107 bp fragment had promoter activity when located in the upstream of structural gene of galactodinase of E. coli. The promoter-bearing fragment contains two overlapping putative promoter sequences, both of which show a fit in eight of twelve nucleotides with consensus sequences of E. coli promoters at the -35 and -10 regions.

  • PDF

Intragenic Control of Expression of a Rice MADS Box Gene OsMADS1

  • Jeon, Jong-Seong;Lee, Sichul;An, Gynheung
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.474-480
    • /
    • 2008
  • OsMADS1 is a rice MADS box gene necessary for floral development. To identify the key cis-regulatory regions for its expression, we utilized transgenic rice plants expressing GUS fusion constructs. Histochemical analysis revealed that the 5.7-kb OsMADS1 intragenic sequences, encompassing exon 1, intron 1, and a part of exon 2, together with the 1.9-kb 5' upstream promoter region, are required for the GUS expression pattern that coincides with flower-preferential expression of OsMADS1. In contrast, the 5' upstream promoter sequence lacking this intragenic region caused ectopic expression of the reporter gene in both vegetative and reproductive tissues. Notably, incorporation of the intragenic region into the CaMV35S promoter directed the GUS expression pattern similar to that of the endogenous spatial expression of OsMADS1 in flowers. In addition, our transient gene expression assay revealed that the large first intron following the CaMV35S minimal promoter enhances flower-preferential expression of GUS. These results suggest that the OsMADS1 intragenic sequence, largely intron 1, contains a key regulatory region(s) essential for expression.

Identification of a cis-acting Element Region in the Promoter of Porcine Uroplakin II Gene

  • Kwon, Deug-Nam;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.194-194
    • /
    • 2004
  • Tissue-specific expression of the desired gene product in the targrt tissue is central to the concept of bioreactor. One approach is to use a tissue-specific promoter to drive desired gene. To investigate the feasibility of tissue-specific gene expression for bladder using the porcine uroplakin(UPII) promoter and its transcriptional control the efficacy of this promoter as well as well as fragments in regulating gene expression were cell lines using DNA transfection. (omitted)

  • PDF

Genetic polymorphism in regulatory region of fatty acid binding protein 4 (FABP4) and its effect on carcass weight in Hanwoo steers (한우 지방산결합단백질 4(FABP4) 유전자 조절영역내 단일염기변이(SNP)와 도체형질간 연관성 분석)

  • Lee, Seung-Hwan;Kim, Nam-Kuk;Kim, Seung-Chang;Choi, Bong-Hwan;Heo, Kang-Neung;Lee, Chang-Soo;Kim, Oun-Hyun;Lee, Jun-Heon;Kim, Hyeong-Cheul;Hong, Seong-Koo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.673-680
    • /
    • 2011
  • The aim of this study was to identify the polymorphism on fatty acid binding protein (FABP4) gene promoter region and its association with carcass traits in Hanwoo. We performed PCR-direct sequencing of FABP4 promoter region to identify single nucleotide polymorphism (SNPs) using unrelated 24 Hanwoo bulls. Four SNPs (-298A>G, -472A>G, -887A>G, -862A>G) were detected in the promoter region and genotyped on 583 Hanwoo steers. A linear mixed model revealed an association of three SNPs (-298A>G, -472A>G and -862A>G) with carcass weight and marbling score in dominance model (P<0.05). The animals with AA genotypes for the three SNPs were heavier carcass weight (5 kg) than animals with GG genotypes in the statistical analysis. For the marbling score, the AA genotype was lower effect of marbling score (0.21) than GG genotypes. In conclusion, this study indicates an important role for three SNPs detected in promoter region of FABP4 in determining carcass weight and marbling score in Hanwoo.

BRD7 Promoter Hypermethylation as an Indicator of Well Differentiated Oral Squamous Cell Carcinomas

  • Balasubramanian, Anandh;Subramaniam, Ramkumar;Narayanan, Vivek;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1615-1619
    • /
    • 2015
  • Background: Promoter hypermethylation mediated gene silencing of tumor suppressor genes is considered as most frequent mechanism than genetic aberrations such as mutations in the development of cancers. BRD7 is a single bromodomain containing protein that functions as a subunit of SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well know tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. Loss of expression of BRD7 has been observed in breast cancers and nasopharyngeal carcinomas due to promoter hypermethylation. However, the genetic status of BRD7 in oral squamous cell carcinomas (OSCCs) is not known, although OSCC is one of the most common among all reported cancers in the Indian population. Hence, in the present study we investigated OSCC samples to determine the occurrence of hypermethylation in the promoter region of BRD7 and understand its prevalence. Materials and Methods: Genomic DNA extracted from biopsy tissues of twenty three oral squamous cell carcinomas were digested with methylation sensitive HpaII type2 restriction enzyme that recognizes and cuts unmethylated CCGG motifs. The digested DNA samples were amplified with primers flanking the CCGG motifs in promoter region of BRD7 gene. The PCR amplified products were analyzed by agarose gel electrophoresis along with undigested amplification control. Results: Methylation sensitive enzyme technique identified methylation of BRD7 promoter region seventeen out of twenty three (74%) well differentiated oral squamous cell carcinoma samples. Conclusions: The identification of BRD7 promoter hypermethylation in 74% of well differentiated oral squamous cell carcinomas indicates that the methylation dependent silencing of BRD7 gene is a frequent event in carcinogenesis. To the best of our knowledge, the present study is the first to report the occurrence of BRD7and its high prevalence in oral squamous cell carcinomas.

Expression of \beta-agarase Gene and Carabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. (해양의 Pseudomonas sp. 로부터 분리한 alginate lyase 유전자의 promoter에 의한 대장균 내에서의 \beta-agarase 유전자의 발현과 catabolite repression의 변화)

  • 공인수;박제현;한정현;최윤혁;이종희;진철호;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Expression of f3 ~agarase Gene and Catabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. Jin, Cheal~Ho, J~Hyeon Park, Jeong-Hyun Han, YoonM Hyeok Chae, Jong~Hee Lee, Jung-Kee Lee!, and In-800 Kong*. Faculty of Food Science and Biotechnology, Pukyong National UniversitYt Pusan 608-737, Korea, llnBioNet Co. 1690-3 Taejon 306-230, Korea - Promoter is a key factor for expression of the recombinant protein. There are many promoters for overexpression of protein in various organisms. The aly promoter of Pseudomonas sp. W7 isolated from marine environment was known to be a constitutive expression promoter of the alginate lyase gene, and it's promoter activity is repressed by glucose in Escherichia coli. To investigate the catabolite repression of the aly promoter ~md association between the promoter mutants, f3 agarase gene, which was also cloned from Pseudomonas sp. W7 was connected to the aly promoter with the sequence the coding 46 N-terminal amino acids ofthe alginate lyase gene. The constructed plasmid was introduced into E. coli and the agarase activity was measured. Fourty six amino acids of the alginate lyase gene was serially deleted using peR to the direction of 5' upstream region and subcloned. The agarase was overexpressed by the aly promoter and the production of agarase was repressed by the addition of glucose into culture media. Fourty six amino acids of alginate lyase did not affect the production of agarase at all. The deletion of a putative stem-loop structure in the aly promoter induced the decrease of f3 -agarase productivity.

  • PDF

Molecular Analysis of Promoter and Intergenic Region Attenuator of the Vibrio vulnificus prx1ahpF Operon

  • Lee, Hyun Sung;Lim, Jong Gyu;Han, Kook;Lee, Younghoon;Choi, Sang Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1380-1389
    • /
    • 2015
  • Prx1, an AhpF-dependent 2-Cys peroxiredoxin (Prx), was previously identified in Vibrio vulnificus, a facultative aerobic pathogen. In the present study, transcription of the V. vulnificus prx1ahpF genes, which are adjacently located on the chromosome, was evaluated by analyzing the promoter and intergenic region of the two genes. Northern blot analyses revealed that transcription of prx1ahpF results in two transcripts, the prx1 and prx1ahpF transcripts. Primer extension analysis and a point mutational analysis of the promoter region showed that the two transcripts are generated from a single promoter. In addition, the 3' end of the prx1 transcript at the prx1ahpF intergenic region was determined by a 3'RACE assay. These results suggested that the prx1ahpF genes are transcribed as an operon, and the prx1 transcript was produced by transcriptional termination in the intergenic region. RNA secondary structure prediction of the prx1ahpF intergenic region singled out a stem-loop structure without poly(U) tract, and a deletion analysis of the intergenic region showed that the atypical stem-loop structure acts as the transcriptional attenuator to result in the prx1 and prx1ahpF transcripts. The combined results demonstrate that the differential expression of prx1 and ahpF is accomplished by the cis-acting transcriptional attenuator located between the two genes and thereby leads to the production of a high level of Prx1 and a low level of AhpF.