• 제목/요약/키워드: Promising Fields

검색결과 274건 처리시간 0.029초

코어샘플을 이용한 질소 등 토양성분 현장 측정방법의 비교평가 (Comparison of In-Field Measurements of Nitrogen and Other Soil Properties with Core Samples)

  • 권기영
    • Journal of Biosystems Engineering
    • /
    • 제36권2호
    • /
    • pp.96-108
    • /
    • 2011
  • Several methods of in-field measurements of Nitrogen and other soil properties using cores extracted by a hydraulic soil sampler were evaluated. A prototype core scanner was built to accommodate Veris Technologies commercial Vis-NIRS equipment. The testing result for pH, P and Mg were close to RPD (Ratio of Prediction to Deviation = Standard deviation/RMSE) of 2, however the scanner could not achieve the goal of RPD of 2 on some other properties, especially on nitrate nitrogen ($NO_3$) and potassium (K). In situ NIRS/EC probe showed similar results to the core scanner; pH, P and Mg were close to RPD of 2, while $NO_3$ and K were RPD of 1.5 and 1.2, respectively. Correlations between estimations using the probe and the core scanner were strong, with $r^2$ > 0.7 for P, Mg, Total N, Total C and CEC. Preliminary results for mid-IR spectroscopy showed an $r^2$ of 0.068 and an RMSE for nitrate (N) of 18 ppm, even after the removal of calcareous samples and possible N outlier. After removal of calcareous samples on a larger sample set, results improved considerably with an $r^2$ of 0.64 and RMSE of 6 ppm. However, this was only possible after carbonate samples were detected and eliminated, which would not be feasible under in-field measurements. Testing of $NO_3$ and K ion-selective electrodes (ISEs) revealed promising results, with acceptable errors measuring soil solutions containing nitrate and potassium levels that are typical of production agriculture fields.

이광자 광중합 공정을 이용한 3차원 미세구조물 제작기술 동향 (Recent Progress in the Nanoscale Additive Layer Manufacturing Process Using Two-Photon Polymerization for Fabrication of 3D Polymeric, Ceramic, and Metallic Structures)

  • 하철우;임태우;손용;박석희;박상후;양동열
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.265-270
    • /
    • 2016
  • Recently, many studies have been conducted on the nano-scale fabrication technology using twophoton- absorbed polymerization induced by a femtosecond laser. The nano-stereolithography process has many advantages as a technique for direct fabrication of true three-dimensional shapes in the range over several microns with sub-100 nm resolution, which might be difficult to obtain by using general nano/microscale fabrication technologies. Therefore, two-photon induced nano-stereolithography has been recently recognized as a promising candidate technology to fabricate arbitrary 3D structures with sub-100 nm resolution. Many research works for fabricating novel 3D nano/micro devices using the two-photon nano-stereolithography process, which can be utilized in the NT/BT/IT fields, are rapidly advancing.

AC Breakdown Voltage and Viscosity of Palm Fatty Acid Ester (PFAE) Oil-based Nanofluids

  • Mohamad, Mohd Safwan;Zainuddin, Hidayat;Ab Ghani, Sharin;Chairul, Imran Sutan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2333-2341
    • /
    • 2017
  • Mineral oils are commonly used as transformer insulation oils but these oils are obtained from non-renewable and non-sustainable sources, which is highly undesirable. For this reason, natural ester oils are now being used in replacement of mineral oils because of their good biodegradability, high cooling stability, good oxidation stability and excellent insulation performance. Nanotechnology has gained prominence in both academic and industrial fields over the years and it has been shown in previous studies that nanoscale materials are useful for transformers due to their favourable dielectric properties. The objective of this study is to compare the AC breakdown voltage and viscosity of natural ester oil with three types of nanofluids. The natural ester oil-based nanofluids are prepared by mixing palm fatty acid ester (PFAE) oil with three types of nanoparticles at a concentration of 0.01 g/l: (1) $Fe_3O_4$ conductive nanoparticles, (2) $TiO_2$ semi-conductive nanoparticles and (3) $Al_2O_3$ insulating nanoparticles. The AC breakdown voltage of the oil samples is analysed using Weibull statistical analysis and the results reveal that the PFAE oil-based $Fe_3O_4$ nanofluid gives exceptional dielectric performance compared to other oil samples, whereby the AC breakdown voltage increases by 43%. It can be concluded that the PFAE oil-based $Fe_3O_4$ nanofluid is a promising dielectric liquid to substitute mineral oils.

마그네슘합금의 조직제어(組織制御)와 성형가공(成形加工) 및 스크랩 리싸이클링 기술(技術) (Microstructure Control, Forming Technologies of Mg Alloys and Mg Scrap Recycling)

  • 심재동;이동휘
    • 자원리싸이클링
    • /
    • 제20권1호
    • /
    • pp.69-79
    • /
    • 2011
  • 마그네슘 합금은 비중이 1.74로 가벼운데다 비강도는 구조용 금속 중에서 가장 크며, 방진성, 전자파 차폐성, 저용점 용 여러 가지 장점이 있어 최근 자동차 부품과 전자산업 제품 분야에서 이용이 크게 기대되는 금속이다. 그러나 마그네슘의 결정구조는 조밀 육방정이기 때문에 소성변형이 가능한 슬립면이 한정되어 있으며 압연이나 압출가공 시에는 강한 집합조직이 형성되어 상온가공이 곤란하다. 따라서 지금까지 성형성 개선을 위한 조직제어와 성형기술 분야에서 많은 연구개발이 이루어져 왔다. 본고에서는 결정립과 집합조직에 관한 미세조직의 제어방법, 용체성형, 압연 및 압출에 관한 성형가공 기술과 마그네슘 스크랩 리싸이클링 기술에 관하여 최근의 연구개발 사례를 소개한다.

액화천연가스 플랜트 시스템 위험도평가 기술 (Risk Assessment Technology of LNG Plant System)

  • 최송천;하제창;이미해;조영도;장윤석;최신범;최재붕
    • 비파괴검사학회지
    • /
    • 제29권2호
    • /
    • pp.162-170
    • /
    • 2009
  • 고유가 및 에너지 문제 해결대책의 하나로 고부가가치 산업인 액화천연가스(LNG) 플랜트 건설시장에 대한 세계적 관심이 증대되고 있다. 본 논문은 선진국의 기술독점에 대응하기 위해 추진중인 우리나라의 위험도평가 기술개발 방안을 소개하기 위한 것이다. 먼저 위험도평가 기술을 정의한 후 국내외 기술의 특징 및 수준을 분석하였다. 기술분석 결과를 토대로 위험도평가 프로그램, 비파괴진단 신뢰도평가 기술, 안전기준 통합클래스 개발이라는 핵심 요소를 도출하였다. 이는 정보 기반의 융합기술로써, 다양한 설비 검사 및 진단분야의 데이터베이스와 인공지능형 최적화 기법을 탑재한 비파괴평가 시스템과 연계하여 LNG 플랜트 모듈화 및 효율성 개선을 위해 활용될 수 있다.

Development of GaInP-AlGaInP High Power Red Laser Diodes

  • 김호경;김창주;최재혁;배성주;송근만;신찬수;고철기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.118-119
    • /
    • 2013
  • High power, short wavelength red laser diodes (LDs) have attracted significant interests in a variety of fields due to their advantages in terms of reliability, compactness and cost. The higher brightness for human eyes is required, the shorter wavelength like 630 nm is necessary with higher output power. In this respect, LDs are promising as alternative candidates of gas or dye lasers for such applications due to their small size, high optical/electrical power conversion efficiency, robustness and so on. The crystalline quality of GaInP-AlGaInP multiple quantum wells (MQWs) and AlInP cladding layers is a crucial part in the device performance of GaInP red LDs. Here, we first investigated the effect of Si diffusion on the optical properties of GaInP-AlGaInP MQWs grown with different growth temperatures. Secondary ion mass spectroscopy (SIMS) measurements revealed that both the Mg and Si diffusion into MQW active region was significant. To reduce such diffusion, we employed undoped Mg and Si diffusion barrier and could improve the properties.Without both Mg and Si diffusion barriers, no lasing emission was observed. However, lasing emission was observed clearly for the red LDs with both Mg and Si diffusion barriers. We then investigated the temperature dependent optical properties of MQW layers grown with different well thicknesses (6, 8 and 10 nm). When the well thickness was 10 nm, the better crystalline quality was obtained. However, the observed LD performances were similar, probably due to the defects and impurities in the AlGaInP layer. Further investigation with the detailed analyses will be presented later.

  • PDF

보리의 기계수확체계(機械收穫體系) 시험(試驗) (A Study on Mechanized System of Barley Harvesting)

  • 김정수;이동현;백풍기;정두호
    • Journal of Biosystems Engineering
    • /
    • 제7권2호
    • /
    • pp.36-44
    • /
    • 1983
  • Farm population was rapidly decreasing due to shift of the people from farm sector to the non-farm sector caused by the economic growth of the country. Especially, a great shortage of farm labor in busy farming period in June and October is becoming a serious problem in maintaining or promoting land productivity. The peak of labor requirement in summer is caused by rice transplanting and barley harvesting. In order to reduce the restrictions imposed on farm management by the concurrence of labor requirement and the lack of labor, the experimental study for mechanization of barley harvesting has been carried out in the fields. 1. The machines for barley harvesting were knap-sack type reapers, windrow reaper (power tiller attachment), binder and combine. The order of higher efficiency of machine for barley harvesting was combine, binder, windrow reaper (WR), knapsack type reaper 1(KSTR1), and knap sack type reaper 2(KSTR2; mist and duster attachment). 2. The ratio of grain loss for the manual, binder, and combine plot was about four percent of total field yield. 3. The total yield of barley in 35 days and 40 days harvesting after heading were 514 kg and 507kg per 10 ares respectively. The yield of 35 days-plot was higher than other experimental plots. 4. The lowest yield was recorded in 30 days-plot due to the large quantity of immatured grains and having lighter 1000-grain weight. The ratio of immatured grains was 2.66 percent and 1000-grain weight was 29.4 grams. 5. The total harvesting cost of the windrow reaper was 10,178 won per 10 ares. It was the lowest value compared to other machines. The next were combine, binder, KSTR1, KSTR2, and manual in sequence. As a result, the optimum time of barley harvesting for mechanization was 35-40 days after heading. Combine, binder, and windrow reaper were recommended as the suitable machines for barley harvesting in the work efficiency. However, in total harvesting cost, the windrow reaper was the most promising machine for barley harvesting.

  • PDF

효과적인 약물전달 시스템을 위한 나노입자 유도 장치 (Nanoparticle Inducing Device for Effective Drug Delivery System)

  • 이총명;한현호;장병한;오은설;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.102-110
    • /
    • 2017
  • 본 논문은 자석을 회전시켜 실시간으로 자기장을 변화시키고 그로 인해 특정 조건에서 산화철 나노입자를 side point(피부)보다 center point(심부)에서 더 많이 유도할 수 있다는 가능성을 제시하였다. 향후 연구로 유속에 따른 Critical Magnetic flux density, 시간에 따른 나노입자 축적량, 자기장과 산화철 나노입자의 상호작용을 고려한 실험 설계, 전자석 등을 이용한 자기장조절을 연구하여 실질적인 혈관에서 본 실험을 진행할 계획이다.

Anti-proliferative and Antioxidant Activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone, a Hydroxyanthraquinoid Extrolite Produced by Amycolatopsis thermoflava strain SFMA-103

  • Kumar, C. Ganesh;Mongolla, Poornima;Chandrasekhar, Cheemalamarri;Poornachandra, Yedla;Siva, Bandi;Babu, K. Suresh;Ramakrishna, Kallaganti Venkata Siva
    • 한국미생물·생명공학회지
    • /
    • 제45권3호
    • /
    • pp.200-208
    • /
    • 2017
  • Actinobacteria are prolific producers of a large number of natural products with diverse biological activities. In the present study, an actinobacterium isolated from sunflower rhizosphere soil sample collected from Medak, Andhra Pradesh, South India was identified as Amycolatopsis thermoflava strain SFMA-103. A pigmented secondary metabolite in culture broth was extracted by using methanol and it was further purified by silica gel column chromatography with methanol-chloroform solvent system. Structural elucidation studies based on UV-visible, 1D and 2D-NMR, FT-IR, and mass spectroscopic analyses confirmed the structure as 1-methoxy-3-methyl-8-hydroxy-anthraquinone. It showed significant in vitro anticancer activity against lung cancer and lymphoblastic leukemia cells with $IC_{50}$ values of 10.3 and $16.98{\mu}M$, respectively. In addition, 1-methoxy-3-methyl-8-hydroxy-anthraquinone showed good free radical scavenging activity by DPPH method with an $EC_{50}$ of $18.2{\mu}g/ml$. It also showed other promising superoxide radical scavenging, nitric oxide radical scavenging and inhibition of lipid peroxidation activities. This is a first report of anti-proliferative and antioxidant activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone isolated from A. thermoflava strain SFMA-103 which may find potential application in biotechnological and pharmaceutical fields.

지역 구분을 통한 약식 BIPV 발전량 예측 모델 개발 (The Simplified Pre-Estimation Model Development of a BIPV Generation Rate by the District Division)

  • 최원기;오민석;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.19-29
    • /
    • 2016
  • Whilst there are growing interests in pursuing energy efficiency and zero-energy buildings in built environment, it is widely recognised that Building-Integrated Photovoltaic (BIPV) is one of the most promising and required technologies to achieve these goals in recent years. Although BIPV is a broadly utilized technique in variety of fields in built environments, it is required that generation of BIVP should be analysed and calculated by external specialists. The aim of this research is to focus on developing a new diagram for prediction of the pre-estimation model in early design stage to harness solar radiation data, PV types, slopes, azimuth and so forth. The results of this study show as follows: 1) We analysed 162 districts in a national level and the examined areas were categorised into five zones. The standard deviation of the results was 2.9 per cent; 2) The increased value of solar radiation on a vertical plane in five categorised zones was 42kWh/m3, and the result was similar to the average value of 43.8kWh/m3; and 3) The pre-estimation of diagram was developed based on the categorisation of zones and azimuth as well as the results of the developed diagram showed little difference compared to the previously utilised method. The suggested diagram in this paper will contribute to estimate BIPV without any external contribution to calculate the value. Even though the result of this study shows little difference, it is required to investigate a number of different variables such as BIPV types, modules, slope angle and so forth in order to develop an integrated pre-estimation diagram.