• 제목/요약/키워드: Proliferation resistance

검색결과 239건 처리시간 0.023초

Bag-1L is a Stress-withstand Molecule Prevents the Downregulation of Mcl-1 and c-Raf Under Control of Heat Shock Proteins in Cisplatin Treated HeLa Cervix Cancer Cells

  • Ozfiliz, Pelin;Arisan, Elif Damla;Coker-Gurkan, Ajda;Obakan, Pinar;Eralp, Tugce Nur;Dinler-Doganay, Gizem;Palavan-Unsal, Narcin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4475-4482
    • /
    • 2014
  • Background: Cisplatin, a DNA damaging agent, induces apoptosis through increasing DNA fragmentation. However, identification of intrinsic resistance molecules against Cisplatin is vital to estimate the success of therapy. Bag-1 (Bcl-2-associated anthanogene) is one anti-apoptotic protein involved in drug resistance impacting on therapeutic efficiency. Elevated levels of this protein are related with increase cell proliferation rates, motility and also cancer development. For this reason, we aimed to understand the role of Bag-1 expression in Cisplatin-induced apoptosis in HeLa cervix cancer cells. Cisplatin decreased cell viability in time- and dose-dependent manner in wt and Bag-1L+HeLa cells. Although, $10{\mu}M$ Cisplatin treatment induced cell death within 24h by activating caspases in wt cells, Bag-1L stable transfection protected cells against Cisplatin treatment. To assess the potential protective role of Bag-1, we first checked the expression profile of interacting anti-apoptotic partners of Bag-1. We found that forced Bag-1L expression prevented Cisplatin-induced apoptosis through acting on Mcl-1 expression, which was reduced after Cisplatin treatment in wt HeLa cells. This mechanism was also supported by the regulation of heat shock protein (Hsp) family members, Hsp90 and Hsp40, which were involved in the regulation Bag-1 interactome including several anti-apoptotic Bcl-2 family members and c-Raf.

Growth, Clonability, and Radiation Resistance of Esophageal Carcinoma-derived Stem-like Cells

  • Li, Jian-Cheng;Liu, Di;Yang, Yan;Wang, Xiao-Ying;Pan, Ding-Long;Qiu, Zi-Dan;Su, Ying;Pan, Jian-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4891-4896
    • /
    • 2013
  • Objective: To separate/enrich tumor stem-like cells from the human esophageal carcinoma cell line OE-19 by using serum-free suspension culture and to identify their biological characteristics and radiation resistance. Methods: OE-19 cells were cultivated using adherent and suspension culture methods. The tumor stem-like phenotype of CD44 expression was detected using flow cytometry. We examined growth characteristics, cloning capacity in soft agar, and radiation resistance of 2 groups of cells. Results: Suspended cells in serum-free medium formed spheres that were enriched for CD44 expression. CD44 was expressed in 62.5% of suspended cells, but only in 11.7% of adherent cells. The suspended cells had greater capacity for proliferation and colony formation in soft agar than the adherent cells. When the suspended and adherent cells were irradiated at 5 Gy, 10 Gy, or 15 Gy, the proportion of CD44+ suspended cells strongly and weakly positive for CD44 was 77.8%, 66.5%, 57.5%; and 21.7%, 31.6%, 41.4%, respectively. In contrast, the proportion of CD44+ adherent cells strongly positive for CD44 was 18.9%, 14.%, and 9.95%, respectively. When the irradiation dose was increased to 30 Gy, the survival of the suspended and adherent cells was significantly reduced, and viable CD44+ cells were not detected. Conclusion: Suspended cell spheres generated from OE-19 esophageal carcinoma cells in serum-free stem medium are enriched in tumor stem-like cells. CD44 may be a marker for these cells.

Hypoxia-Inducible Factor 1 Promoter-Induced JAB1 Overexpression Enhances Chemotherapeutic Sensitivity of Lung Cancer Cell Line A549 in an Anoxic Environment

  • Hu, Ming-Dong;Xu, Jian-Cheng;Fan, Ye;Xie, Qi-Chao;Li, Qi;Zhou, Chang-Xi;Mao, Mei;Yang, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2115-2120
    • /
    • 2012
  • The presence of lung cancer cells in anoxic zones is a key cause od chemotherapeutic resistance. Thus, it is necessary to enhance the sensitivity of such lung cancer cells. However, loss of efficient gene therapeutic targeting and inefficient objective gene expression in the anoxic zone in lung cancer are dilemmas. In the present study, a eukaryotic expression plasmid pUC57-HRE-JAB1 driven by a hypoxia response elements promoter was constructed and introduced into lung cancer cell line A549. The cells were then exposed to a chemotherapeutic drug cis-diamminedichloroplatinum (C-DDP). qRT-PCR and western blotting were used to determine the mRNA and protein level and flow cytometry to examine the cell cycle and apoptosis of A549 transfected pUC57-HRE-JAB1. The results showed that JAB1 gene in the A549 was overexpressed after the transfection, cell proliferation being arrested in G1 phase and the apoptosis ratio significantly increased. Importantly, introduction of pUC57-HRE-JAB1 significantly increased the chemotherapeutic sensitivity of A549 in an anoxic environment. In conclusion, JAB1 overexpression might provide a novel strategy to overcome chemotherapeutic resistance in lung cancer.

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis

  • Kim, Dae Kyoung;Kim, Yu Na;Kim, Ye Eun;Lee, Seo Yul;Shin, Min Joo;Do, Eun Kyoung;Choi, Kyung-Un;Kim, Seung-Chul;Kim, Ki-Hyung;Suh, Dong-Soo;Song, Parkyong;Kim, Jae Ho
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.481-492
    • /
    • 2021
  • Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.

Insulin Resistance Reduces Sensitivity to Cis-Platinum and Promotes Adhesion, Migration and Invasion in HepG2 Cells

  • Li, Lin-Jing;Li, Guang-Di;Wei, Hu-Lai;Chen, Jing;Liu, Yu-Mei;Li, Fei;Xie, Bei;Wang, Bei;Li, Cai-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3123-3128
    • /
    • 2014
  • The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the stability of HepG2/IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie;Wu, Jia-Ying;Deng, Yu-Yi;Wu, Ying;Wang, Xiao-Qi;Li, Amy Sze-man;Wong, Lut Yi;Fu, Xiu-Qiong;Yu, Zhi-Ling;Liang, Chun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.418-425
    • /
    • 2022
  • Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

Design of a Mixed-Spectrum Reactor With Improved Proliferation Resistance for Long-Lived Applications

  • Abou-Jaoude, Abdalla;Erickson, Anna;Stauff, Nicolas
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.359-367
    • /
    • 2018
  • Long-lived Small Modular Reactors are being promoted as an innovative way of catering to emerging markets and isolated regions. They can be operated continuously for decades without requiring additional fuel. A novel configuration of long-lived reactor core employs a mixed neutron spectrum, providing an improvement in nonproliferation metrics and in safety characteristics. Starting with a base sodium reactor design, moderating material is inserted in outer core assemblies to modify the fast spectrum. The assemblies are shuffled once during core lifetime to ensure that every fuel rod is exposed to the thermalized spectrum. The Mixed Spectrum Reactor is able to maintain a core lifetime over two decades while ensuring the plutonium it breeds is below the weapon-grade limit at the fuel discharge. The main drawbacks of the design are higher front-end fuel cycle costs and a 58% increase in core volume, although it is alleviated to some extent by a 48% higher power output.

HDAC3 acts as a negative regulator of angiogenesis

  • Park, Deokbum;Park, Hyunmi;Kim, Youngmi;Kim, Hyuna;Jeoung, Dooil
    • BMB Reports
    • /
    • 제47권4호
    • /
    • pp.227-232
    • /
    • 2014
  • Histone deacetylase-3 (HDAC3) is involved in cellular proliferation, apoptosis and transcriptional repression. However, the role of HDAC3 in angiogenesis remains unknown. HDAC3 negatively regulated the expression of angiogenic factors, such as VEGF and plasminogen activator inhibitor-1 (PAI-1). HDAC3 showed binding to promoter sequences of PAI-1. HDAC3 activity was necessary for the expression regulation of PAI-1 by HDAC3. VEGF decreased the expression of HDAC3, and the down-regulation of HDAC3 enhanced endothelial cell tube formation. HDAC3 negatively regulated tumor-induced angiogenic potential. We show the novel role of HDAC3 as a negative regulator of angiogenesis.

Emerging Roles of Krüppel-Like Factor 4 in Cancer and Cancer Stem Cells

  • Ding, Bo;Liu, Ping;Liu, Wen;Sun, Ping;Wang, Chun-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3629-3633
    • /
    • 2015
  • Cancer stem cells (CSCs) are rare subpopulations within tumors which are recognized as culprits in cancer recurrence, drug resistance and metastasis. However, the molecular mechanisms of how CSCs are regulated remain elusive. Kr$\ddot{u}$ppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverse functions in cell differentiation, proliferation, embryogenesis and pluripotency. Recent progress has highlighted the significance of KLFs, especially KLF4, in cancer and CSCs. Therefore, for better therapeutics of cancer disease, it is crucial to develop a deeper understanding of the mechanisms of how KLF4 regulate CSC functions. Herein we summarized the current understanding of the transcriptional regulation of K LF4 in CSCs, and discussed the functional implications of targeting CSCs for potential cancer therapeutics.

균일한 전단응력에 의한 혈관내피세포의 운동성 변화 (EFFECTS OF UNIFORM SHEAR STRESS ON THE MIGRATION OF VASCULAR ENDOTHELIAL CELL)

  • 신현정;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1404-1408
    • /
    • 2008
  • The migration and proliferation of vascular endothelial cells (VEC), which play an important role in vascular remodeling, are known to be regulated by hemodynamic forces in the blood vessels. When shear stresses of 2, 6, 15 dynes/$cm^2$ are applied on mouse micro-VEC in vitro, cells surprisingly migrate against the flow direction at all conditions. While higher flow rate imposes more resistance against the cells, reducing their migration speed, the horizontal component of the velocity parallel to the flow increases with the flow rate, indicating the higher alignment of cells in the direction parallel to the flow at a higher shear stress. In addition, cells exhibit substrate stiffness and calcium dependent migration behavior, which can be explained by polarized remodeling in the mechanosensitive pathway under shear stress.

  • PDF