• Title/Summary/Keyword: Projection Parameters

Search Result 236, Processing Time 0.021 seconds

A Study on the Transformation of Two Dimensional Geodetic Coordinates between Bessel and WGS84 Ellipsoids by UTM Projection (UTM투영에 의한 Bessel과 WGS84 타원체간의 2차원 측지좌표변환 연구)

  • 이용창;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The aim of this paper is to propose the technique of the two dimensional geodetic coordinates conversion between WGS84 and Bessel spheroids by the two-dimensional affine transformation modeling based on the UTM plane coordinates without the local geoid model which is essential to three dimensional coordinates conversion. Area of approximately $25\times{11}$ square km in the city of Inchon was selected as the test area. The transformation parameters were determined using the eleven triangulation control points in test area. And then, those paraneters were applied to the fifteen cadastral control points which selected as checking points for precision checking of transformation parameters. The average and standard deviations of the absolute values of the conversion residuals of checking points in latitude/longitude and N/E(UTM) and/or x/y(TM) are $\pm0.006"$$\pm0.013"$ and $\pm{17cm/}\pm{30cm}$ respectively. Also, coefficients for 7-parameters, 3-parameters and UTM model transformation computed according as sizes of transformed area, and then the transformed characteristics of checking points according to transformation methods analyzed synthetically.hetically.

  • PDF

An improved extended Kalman filter for parameters and loads identification without collocated measurements

  • Jia He;Mengchen Qi;Zhuohui Tong;Xugang Hua;Zhengqing Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2023
  • As well-known, the extended Kalman filter (EKF) is a powerful tool for parameter identification with limited measurements. However, traditional EKF is not applicable when the external excitation is unknown. By using least-squares estimation (LSE) for force identification, an EKF with unknown input (EKF-UI) approach was recently proposed by the authors. In this approach, to ensure the influence matrix be of full column rank, the sensors have to be deployed at all the degrees-of-freedom (DOFs) corresponding to the unknown excitation, saying collocated measurements are required. However, it is not easy to guarantee that the sensors can be installed at all these locations. To circumvent this limitation, based on the idea of first-order-holder discretization (FOHD), an improved EKF with unknown input (IEKF-UI) approach is proposed in this study for the simultaneous identification of structural parameters and unknown excitation. By using projection matrix, an improved observation equation is obtained. Few displacement measurements are fused into the observation equation to avoid the so-called low-frequency drift. To avoid the ill-conditioning problem for force identification without collocated measurements, the idea of FOHD is employed. The recursive solution of the structural states and unknown loads is then analytically derived. The effectiveness of the proposed approach is validated via several numerical examples. Results show that the proposed approach is capable of satisfactorily identifying the parameters of linear and nonlinear structures and the unknown excitation applied to them.

Hough Transform Based Projecton Method for Target Tracking in Image Suquences (투사 및 허프 변환 방식에 의한 연속 영상상의 비행체 궤적 추적)

  • 최재호;곽훈성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2094-2105
    • /
    • 1994
  • This paper contains a Hough transform based projection method derived from Radon transform for tracking dim unresolved(sub-pixel) moving targets that move along straight line parths across a time sequential image data. In contrast to several recently presented Hough transform methods using a compressed image referred to as the track map our proposed technique utilizing a set of projections taken along arbitrary orientations effectively increases the changes of target detection, and creates a robust track estimation environment by incorporating all the available knowledge obtained from the projections. Moreover, in order to quantitatively assess the estimation capability of the projection-based Hough transform algorithm, the analytical bounds on the Hough space parameter errors introduced by image space noise contamination are derived. The simulation yielded promising results of estimating the track parameters even under low signal to noise rations when our technique was tested against the time sequential sets of real infrared image data referred to as the HiCamps.

  • PDF

QUANTITATIVE ASSESSMENT OF NASAL AND UPPER LIP CHANGES AFTER LE FORT I OSTEOTOMY SURGERY USING A 3-DIMENSIONAL COMPUTED TOMOGRAPHY (르포씨 1형 골절단술후 코와 상순의 연조직 변화의 삼차원 컴퓨터 단층촬영을 이용한 정량적 측정에 관한 연구)

  • Lee, Won-Deok;Yoo, Chung-Kyu;Choi, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Objective: To evaluate nasal and upper lip changes after Le Fort I surgery by means of images taken with a three-dimensional computed tomography (3D-CT). Methods: Fifteen patients (9 female and 6 male, mean age 21.9 years) with preoperative and postoperative 3D-CT were studied. The patients underwent maxillary movement with impaction or elongation, and advancement or setback. With the 3D-CT which presents reconstructive soft tissue images, preoperative and postoperative measurement and analysis were performed for nasal tip projection angle, columellar angle, supratip break angle, nasolabial angle, interalar width, internostril width, columella length and nasal tip projection. Results: Postoperative interalar and internostril widening was significant for all categories of maxillary movement. However, there was little significant relation in all parameters between the amount and direction of maxillary movement. Interestingly, movement of the maxilla with upward did show a little decrease in the columellar angle, supra tip break angle and nasolabial angle. Also movement of the maxilla with forward did show a little advancement in the upper lip position. Conclusion: Changes to the nose clearly occur after orthognathic surgery. There was a significant increase in postoperative interalar width and internostril width with maxillary movement. However, no clear correlation could be determined between amount of change and maxillary movement. Interestingly, maxillary impaction did show a little decrease in the columellar angle, supra tip break angle and nasolabial angle. In addition, we used 3D-CT for more precise analysis as a useful tool.

Measurement of Target Objects Based on Recognition of Curvature and Plane Surfaces using a Single Slit Beam Projection (슬릿광 투영법을 이용한 곡면과 평면의 식별에 의한 대상물체의 계측)

  • Choi, Yong-Woon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.568-576
    • /
    • 1999
  • Using a laser sheet beam projector combined with a CCD-Camera, an efficient technique to recognize complex surface of curvature and lane has been demonstrated for the purpose of mobile robot navigation. In general, obstacles of indoor environments in the field of SLIT-RAY plane are captured as segments of an elliptical arc and a line in the camera image. The robot has been capable of moving along around the obstacle in front of it, by recognizing the original shape of each segment with the differential coefficient by means of least squares method. In this technique, the imaged pixels of each segment, particularly elliptical arc, have been converted into a corresponding circular arc in the real-world coordinates so as to make more feasible the image processing for the position and radius measurement than conventional way based on direct elliptical are analyses. Advantages over direct elliptical cases include 1) higher measurement accuracy and shorter processing time because the circular arc process can reduce the shape-specifying parameters, 2) no complicated factor such as the tilt of elliptical arc axis in the image plane, which produces the capability to find column position and radiua regardless of the camera location . These are essentially required for a mobile robot application. This technique yields an accuracy less than 2cm for a 28.5cm radius column located in the range of 70-250cm distance from the robot. The accuracy obtained in this study is sufficient enough to navigate a cleaning robot which operates in indoor environments.

  • PDF

Quality Assessment of Images Projected Using Multiple Projectors

  • Kakli, Muhammad Umer;Qureshi, Hassaan Saadat;Khan, Muhammad Murtaza;Hafiz, Rehan;Cho, Yongju;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2230-2250
    • /
    • 2015
  • Multiple projectors with partially overlapping regions can be used to project a seamless image on a large projection surface. With the advent of high-resolution photography, such systems are gaining popularity. Experts set up such projection systems by subjectively identifying the types of errors induced by the system in the projected images and rectifying them by optimizing (correcting) the parameters associated with the system. This requires substantial time and effort, thus making it difficult to set up such systems. Moreover, comparing the performance of different multi-projector display (MPD) systems becomes difficult because of the subjective nature of evaluation. In this work, we present a framework to quantitatively determine the quality of an MPD system and any image projected using such a system. We have divided the quality assessment into geometric and photometric qualities. For geometric quality assessment, we use Feature Similarity Index (FSIM) and distance-based Scale Invariant Feature Transform (SIFT). For photometric quality assessment, we propose to use a measure incorporating Spectral Angle Mapper (SAM), Intensity Magnitude Ratio (IMR) and Perceptual Color Difference (ΔE). We have tested the proposed framework and demonstrated that it provides an acceptable method for both quantitative evaluation of MPD systems and estimation of the perceptual quality of any image projected by them.

SUMRAY: R and Python Codes for Calculating Cancer Risk Due to Radiation Exposure of a Population

  • Michiya Sasaki;Kyoji Furukawa;Daiki Satoh;Kazumasa Shimada;Shin'ichi Kudo;Shunji Takagi;Shogo Takahara;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.90-99
    • /
    • 2023
  • Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection. Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method. Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (RadRAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data. Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.

Adaptive Fuzzy Controller for the Nonlinear System with Unknown Sign of the Input Gain

  • Park Jang-Hyun;Kim Seong-Hwan;Moon Chae-Joo
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 2006
  • We propose and analyze a robust adaptive fuzzy controller for nonlinear systems without a priori knowledge of the sign of the input gain function. No assumptions are made about the type of nonlinearities of the system, except that such nonlinearities are smooth. The uncertain nonlinearities are captured by the fuzzy systems that have been proven to be universal approximators. The proposed control scheme completely overcomes the singularity problem that occurs in the indirect adaptive feedback linearizing control. Projection in the estimated parameters and switching in the control input are both not required. The stability of the closed-loop system is guaranteed in the Lyapunov viewpoint.

A tracking of the moving objects using normalized hue distribution in HSI color model

  • Shin Chang Hoon;Lim Kang Mo;Lee Se Yeun;Kim Yoon Ho;Lee Joo shin
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.823-826
    • /
    • 2004
  • In this paper, A tracking of the moving objects using normalized hue distribution in HSI color model was proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area. Hue information of the detected moving area are normalized by 24 levels from $0^{\circ}$ to $3600^{\circ}A$ distance in between normalized levels with a hue distribution chart of the normalized moving objects is used for the identity distinction feature parameters of the moving objects. To examine proposed method in this paper, image of moving cars are obtained by setting up three cameras at different places every 1 km on outer motorway. The simulation results of identity distinction show that it is possible to distinct the identity a distance in between normalization levels of a hue distribution chart without background.

  • PDF

Issues in Control of a Robotic Spatial Augmented Reality System (로보틱 공간증강현실 시스템의 제어의 문제)

  • Lee, Joo-Haeng;Kim, Hyun;Suh, Young-Ho;Kim, Hyung-Sun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.437-448
    • /
    • 2011
  • A robotic spatial augmented reality (RSAR) system combines a robotics technology with a spatial augmented reality system (SAR) where cameras are used to recognize real objects and projectors augment information and user interface directly on the surface of the recognized objects, rather than relying on handheld display devices. Moreover, a robotic module is actively used to discover and utilize the context of users and environments. The control of a RSAR system involves several issues from different technical fields such as classical inverse kinematics of motors where projector-camera pairs are mounted, inverse projection problems to find appropriate internal/external parameters of projectors and cameras, and image warping in graphics pipeline to compensate the kinematic constraints. In this paper, we investigate various control issues related to a RSAR system and propose basic approaches to handle them, specially focused on the prototype RSAR system developed in ETRI.