• Title/Summary/Keyword: Projectiles

Search Result 117, Processing Time 0.022 seconds

Propellant Characteristics used for a Rocket-Assisted Projectile with Aluminium Contents (알루미늄 함량에 따른 로켓보조추진탄용 추진제 특성)

  • Jeong, Jae-Yun;Choi, Sung-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.60-66
    • /
    • 2019
  • In this report, the process characteristic(viscosity), mechanical properties, combustion characteristics, ground and flight test results of propellants used for a rocket-assisted projectile are described according to several aluminum contents. As the aluminum content increased, initial viscosity decreased, viscosity build-up accelerated, and combustion rate and pressure exponent decreased. In the ground fire test, the total impulse of the rocket-assisted projectiles containing 10 wt% of aluminum were 5% higher than that of the rocket-assisted projectiles containing 2 wt% and 18 wt% of aluminum. The motor efficiency compared to the theoretical performance was 85.6% with 18 wt% of aluminum, the lowest value among the propellant compositions.

The Study of Aerodynamic about High-speed projectiles using Fluid Structure Interaction analysis (유체 구조 연성 해석기법을 이용한 고속발사체에 미치는 공력의 수치해석적 연구)

  • Kang, Mingyu;Park, Dongjin;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2012
  • This paper is focusing on the define the safety of high speed projectiles from aerodynamic load. The Fin loaded from aerodynamic is the roll of high speed projectile's gide. The Fin can rotate about 25deg as maximum, and it has maximum aerodynamic load with 25deg position. For finite element analysis from aerodynamic load, fluid analysis will be conducted before structure analysis and export pressure data. The pressure data will be used as load condition at structure analysis of Fin. The result of structure analysis of Fin, there is some stress concentration and stress closed with yield stress of material. But this problem will be solved with change to another material.

Concrete Target Size Effect on Projectile Penetration (침투시험에서의 콘크리트 표적크기 영향 분석)

  • Kim, Seokbong;Yoo, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.154-159
    • /
    • 2015
  • This paper deals with the effect of concrete target size on penetration of projectiles. We investigated the penetration depth and residual velocity of projectiles using the 2-D axial symmetric model. Most analysis were conducted with 13 kg projectile (striking velocity: 456.4 m/s) and concrete target with compressive strength of 39 MPa. This paper provided penetration depth (or residual velocity) versus ratio D/d (target diameter, D and projectile diameter, d). When the bottom of concrete cylinder was constrained, penetration depth converged to limit depth more than the ratio D/d of 36. The residual velocity of projectile with thin concrete target were investigated. The residual velocity was converged to specific velocity more than the ratio D/d of 16.

Measuring the Attitude of a Spin-Stabilized Projectile Using Solar/Geomagnetic Sensors (태양광/지자기 센서를 이용한 회전안정형 탄체의 자세 측정)

  • Lee, Yongseon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.565-573
    • /
    • 2020
  • Unlike fin-stabilized projectiles, there has been some difficulty measuring the attitudes of spin-stabilized projectiles during the long-range flight due to their high spin rates. In this work, solar and geomagnetic sensors were used to measure the attitude of a spin-stabilized projectile. A method to calculate the attitude of the projectile from the signals of the sensors was introduced as well as the methods to process the signals of the sensors. To validate the methods, the attitude of a projectile was calculated with the sensor signals from the actual flight data.

Overlapped Electromagnetic Coilgun for Low Speed Projectiles

  • Mohamed, Hany M.;Abdalla, Mahmoud A.;Mitkees, Abdelazez;Sabery, Waheed
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.322-329
    • /
    • 2015
  • This paper presents a new overlapped coilgun configuration to launch medium weight projectiles. The proposed configuration consists of a two-stage coilgun with overlapped coil covers with spacing between them. The theoretical operation of a multi-stage coilgun is introduced, and a transient simulation was conducted for projectile motion through the launcher by using a commercial transient finite element software, ANSOFT MAXWELL. The excitation circuit design for each coilgun is reported, and the results indicate that the overlapped configuration increased the exit velocity relative to a non-overlapped configuration. Different configurations in terms of the optimum length and switching time were attempted for the proposed structure, and all of these cases exhibited an increase in the exit velocity. The exit velocity tends to increase by 27.2% relative to that of a non-overlapped coilgun of the same length.

The experimental investigation for penetration depth and shape of aluminum alloy plates by 5.56mm ball projectile with striking velocities between 350 and 750㎧ (고속충격시 볼탄에 의한 알루미늄 합금의 관통 깊이와 형상에 관한 실험적 연구)

  • 손세원;김희재;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.800-803
    • /
    • 2002
  • This investigation describes and analyses the experimental results proper to the penetration of Al5052-H34 alloy plates of thickness 6, 12 and 16mm(T/D=1, 2, 3) by 5.56mm ball projectiles over the velocity range 350-750㎧. All the high velocity impact tests were carried out at normal impact angle, i.e. zero obliquity. The experimental results presented the variation of depth of penetration, bulge height and diameter, plugged length and diameter with the velocity fur tests on each plate of a given thickness in order to determine the deformation shapes of 5.56mm ball projectiles and targets. Also the protection ballistic limit($V_50$) tests were conducted.

  • PDF

The Perforation Behavior of the Anodized AI Light Armor under High Velocity Impact

  • Sohn, Se-Won;Lee, Doo-Sung;Kim, Hee-Jae;Hong, Sung-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.45-50
    • /
    • 2003
  • In order to investigate the effect of surface treatment (Anodizing) and rolling on AI 5083-H131 alloy, under hyper velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by a protection ballistic limit ($V_{50}$)' a statistical velocity with 50% probability of penetration. Perforation behavior and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0$^{\circ}$ obliquity at room temperature using 5.56mm ball projectiles. $V_{50}$ tests with 0$^{\circ}$ obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes of Al 5052-H34 alloy were compared to those of Al 5083-H 131 alloy.

Numerical Simulation of Projectiles in Detonable Gases

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. The analysis is limited to inviscid flow and includes chmical nonequilibrium. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction fi:ont is established if the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger. The instabilities of the chemical front with a variation of projectiles diameters will be investigated.

  • PDF

A Numerical Study on the Effect of the Tail Wing of a Projectile on the Base Drag (포탄의 꼬리날개가 기저항력에 미치는 영향에 대한 해석적 연구)

  • Noh, Seonghyeon;Kim, Jongrok;Bang, Jaewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.625-636
    • /
    • 2019
  • Recently, research on projectiles with wings for precision guidance is actively underway. In this study, we analyzed how the tail fins attached to the projectile affect the base drag. Aerodynamic analysis was performed with RANS(Reynolds Averaged Navier-Stokes) equations using FLUENT, a commercial CFD(Computational Fluid Dynamics) code. Through the aerodynamic analysis, the base drag characteristics of the projectile by parameters (number, length, thickness, position, shape of tail fin) were investigated. The results of this study are expected to be applicable to aerodynamic design of tail fins mounted on projectiles.

Effect of thickness and reinforcement on concrete plates under high speed projectiles

  • Tais, Abdalla S.;Ibraheem, Omer F.;Raoof, Saad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.587-594
    • /
    • 2022
  • Behavior of concrete elements under the effect of high-speed projectiles has gain increasing interest recently. It's necessary to understand how far the concrete can absorb the effect of bullets in order to save the occupants when design security and military infrastructures. This study presents a total of 18 concrete slabs casted and tested under reinforcement ratios, 0%, 0.35% and 0.7%. Parameters interested were slab thickness, (50 mm, 100 mm, and 150 mm) and type of weapon. All specimens tested to investigate their response under the effect of attacking by two common types of weapon. In general, it was found that projectile penetration was controlled by their thickness regardless the steel reinforcement ratio. However, the steel reinforcement controls the damage.